- #1
Nathan Warford
- 23
- 1
I am aware that according to the Standard Model of Particle Physics, fundamental particles such as electrons and quarks are treated as point-like particles. However, if fundamental particles are indeed 0-dimentional points with no spatial extent, it creates problems (i.e. fundamental particles would be black holes with infinite mass-density with radii far smaller than the Planck length that would evaporate almost instantaneously due to Hawking radiation).
From what I understand, due to the limitations of modern technology, we are currently unable to probe distances small enough to directly measure the sizes of fundamental particles. But surely there are theoretical models that have predicted the sizes of these particles. To be certain, these predictions can't be tested due to the aforementioned limitations of current technology. But I'm curious as to what numerical values these theoretical models predict.
From what I understand, due to the limitations of modern technology, we are currently unable to probe distances small enough to directly measure the sizes of fundamental particles. But surely there are theoretical models that have predicted the sizes of these particles. To be certain, these predictions can't be tested due to the aforementioned limitations of current technology. But I'm curious as to what numerical values these theoretical models predict.