There are z red marbles. How many green marbles are there?

  • MHB
  • Thread starter Johnx1
  • Start date
  • Tags
    Green
In summary, the number of blue marbles in the container is twice the number of red marbles, and the number of green marbles is three more than the number of blue marbles. From this information, we can find that the number of red marbles is z, the number of blue marbles is 2z, and the number of green marbles is 2z+3. Additionally, we can use the fact that there are 19 green marbles in the container to find that there are 41 blue marbles.
  • #1
Johnx1
49
0
In a container, there are some blue, red and green marbles. There are twice as many blue marbles as red marbles, and there are 3 more green marbles than blue marbles.

a) There are z red marbles. How many green marbles are there?

my answer: z + 2z + 6z = 9zb) There are 19 green marbles in the container. Find the number of red marbles.

my answer 19/3 = 6.3/2 = 3.2 red marbles.
 
Mathematics news on Phys.org
  • #2
Johnx said:
In a container, there are some blue, red and green marbles. There are twice as many blue marbles as red marbles, and there are 3 more green marbles than blue marbles.

a) There are z red marbles. How many green marbles are there?

my answer: z + 2z + 6z = 9zb) There are 19 green marbles in the container. Find the number of red marbles.

my answer 19/3 = 6.3/2 = 3.2 red marbles.
I like my notation better. Sorry.

Say we have r red marbles. Then we have b = 2r blue marbles. Now, be careful. "there are 3 more green marbles than blue marbles." That means we have g = b + 3 green marbles, not 3 times b. So g = b + 3 = 2r + 3. (or 2z + 3.) Notice that this gives you an integer number of red marbles.

Can you finish it from here?

-Dan
 
  • #3
topsquark said:
I like my notation better. Sorry.

Say we have r red marbles. Then we have b = 2r blue marbles. Now, be careful. "there are 3 more green marbles than blue marbles." That means we have g = b + 3 green marbles, not 3 times b. So g = b + 3 = 2r + 3. (or 2z + 3.) Notice that this gives you an integer number of red marbles.

Can you finish it from here?

-Dan

Your notations are great. I red it incorrect when it comes to the "more" part.

a ) 2z + 3

b) 2* 19 + 3 = 41
 

FAQ: There are z red marbles. How many green marbles are there?

How do I solve this problem?

The first step to solving this problem is to determine the total number of marbles by adding the number of red and green marbles together. Then, you can use this total number to calculate the ratio of red to green marbles and use that ratio to find the number of green marbles.

Can I use a formula to solve this problem?

Yes, you can use the formula: Number of green marbles = (Number of red marbles / Ratio of red to green marbles) - Number of red marbles to find the number of green marbles.

What if I don't know the ratio of red to green marbles?

If you don't know the ratio, you can use the total number of marbles to estimate the ratio. For example, if there are 10 red marbles and 30 total marbles, the estimated ratio is 1:3 (10/30).

Can I solve this problem without knowing the total number of marbles?

No, you cannot solve this problem without knowing the total number of marbles. The total number of marbles is needed to calculate the ratio and ultimately find the number of green marbles.

Is there a specific method for solving this type of problem?

Yes, this type of problem falls under the category of "ratio and proportion" problems. The method involves setting up a proportion equation and solving for the unknown value using cross-multiplication.

Similar threads

Replies
7
Views
2K
Replies
1
Views
2K
Replies
8
Views
2K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
1
Views
713
Back
Top