Therefore, $\sinh{(4-j3)} = \cos{(3)}\sinh{(4)} - \mathrm{i}\sin{(3)}\cosh{(4)}$

In summary: Let's break it down step by step:$\displaystyle \begin{align*} \sin{ \left( \theta \right) } &= \frac{1}{2\mathrm{i}} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) \end{align*}$We can rewrite $\displaystyle \begin{align*} \mathrm{e}^{-\mathrm{i}\,\theta} \end{align*}$ as $\displaystyle \begin{align*} \frac{1}{\mathrm{e}^{\mathrm{i}\,\theta}} \end{align*}$, so:
  • #1
paulmdrdo1
385
0
Evaluate the following expressions, expressing answers in rectangular form.

1. $\cos(1+j)$
2.$\sinh(4-j3)$

can you help me on how to solve these problems.

thanks in advance!
 
Mathematics news on Phys.org
  • #2
paulmdrdo said:
Evaluate the following expressions, expressing answers in rectangular form.

1. $\cos(1+j)$
2.$\sinh(4-j3)$

can you help me on how to solve these problems.

thanks in advance!

First of all, I refuse to use $\displaystyle \begin{align*} \mathrm{j} \end{align*}$ to represent the imaginary unit, I use $\displaystyle \begin{align*} \mathrm{i} \end{align*}$. Now...

$\displaystyle \begin{align*} \cos{ \left( \alpha + \beta \right) } &\equiv \cos{ \left( \alpha \right) } \cos{ \left( \beta \right) } - \sin{ \left( \alpha \right) } \sin{ \left( \beta \right) } \end{align*}$

so

$\displaystyle \begin{align*} \cos{ \left( 1 + \mathrm{i} \right) } &= \cos{ \left( 1 \right) } \cos{ \left( \mathrm{i} \right) } - \sin{ \left( 1 \right) } \sin{ \left( \mathrm{i} \right) } \end{align*}$

Playing around a bit with Euler's formula we have

$\displaystyle \begin{align*} \mathrm{e}^{\mathrm{i} \, \theta} &= \cos{ \left( \theta \right) } + \mathrm{i}\sin{ \left( \theta \right) } \\ \\ \mathrm{e}^{-\mathrm{i}\,\theta} &= \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \\ &= \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \\ \\ \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{-\mathrm{i}\,\theta} &= 2\cos{ \left( \theta \right) } \\ \\ \cos{ \left( \theta \right) } &= \frac{1}{2} \left( \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{-\mathrm{i}\,\theta} \right) \\ \\ \cos{ \left( \mathrm{i} \right) } &= \frac{1}{2} \left( \mathrm{e}^{\mathrm{i}^2} + \mathrm{e}^{-\mathrm{i}^2} \right) \\ &= \frac{1}{2} \left( \mathrm{e}^{-1} + \mathrm{e}^{1} \right) \\ &= \cosh{ \left( 1 \right) } \\ \\ \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} &= 2\mathrm{i}\sin{ \left( \theta \right) } \\ \mathrm{i} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) &= -2\sin{ \left( \theta \right) } \\ \sin{ \left( \theta \right) } &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) \\ \\ \sin{ \left( \mathrm{i} \right) } &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{\mathrm{i}^2} - \mathrm{e}^{-\mathrm{i}^2} \right) \\ &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{-1} - \mathrm{e}^{1} \right) \\ &= \frac{\mathrm{i}}{2} \left( \mathrm{e}^{1} - \mathrm{e}^{-1} \right) \\ &= \mathrm{i}\sinh{ \left( 1 \right) } \end{align*}$

Thus:

$\displaystyle \begin{align*} \cos{ \left( 1 + \mathrm{i} \right) } &= \cos{ \left( 1 \right) } \cos{ \left( \mathrm{i} \right) } - \sin{ \left( 1 \right) } \sin{ \left( \mathrm{i} \right) } \\ &= \cos{ \left( 1 \right) } \cosh{ \left( 1 \right) } - \sin{ \left( 1 \right) } \left[ \mathrm{i}\sinh{ \left( 1 \right) } \right] \\ &= \cos{ \left( 1 \right) } \cosh{ \left( 1 \right) } - \mathrm{i} \sin{ \left( 1 \right) } \sinh{ \left( 1 \right) } \end{align*}$
 
  • #3
how would you express that in rectangular form?
 
  • #4
Prove It said:
First of all, I refuse to use $\displaystyle \begin{align*} \mathrm{j} \end{align*}$ to represent the imaginary unit, I use $\displaystyle \begin{align*} \mathrm{i} \end{align*}$. Now...

$\displaystyle \begin{align*} \cos{ \left( \alpha + \beta \right) } &\equiv \cos{ \left( \alpha \right) } \cos{ \left( \beta \right) } - \sin{ \left( \alpha \right) } \sin{ \left( \beta \right) } \end{align*}$

so

$\displaystyle \begin{align*} \cos{ \left( 1 + \mathrm{i} \right) } &= \cos{ \left( 1 \right) } \cos{ \left( \mathrm{i} \right) } - \sin{ \left( 1 \right) } \sin{ \left( \mathrm{i} \right) } \end{align*}$

Playing around a bit with Euler's formula we have

$\displaystyle \begin{align*} \mathrm{e}^{\mathrm{i} \, \theta} &= \cos{ \left( \theta \right) } + \mathrm{i}\sin{ \left( \theta \right) } \\ \\ \mathrm{e}^{-\mathrm{i}\,\theta} &= \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \\ &= \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \\ \\ \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{-\mathrm{i}\,\theta} &= 2\cos{ \left( \theta \right) } \\ \\ \cos{ \left( \theta \right) } &= \frac{1}{2} \left( \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{-\mathrm{i}\,\theta} \right) \\ \\ \cos{ \left( \mathrm{i} \right) } &= \frac{1}{2} \left( \mathrm{e}^{\mathrm{i}^2} + \mathrm{e}^{-\mathrm{i}^2} \right) \\ &= \frac{1}{2} \left( \mathrm{e}^{-1} + \mathrm{e}^{1} \right) \\ &= \cosh{ \left( 1 \right) } \\ \\ \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} &= 2\mathrm{i}\sin{ \left( \theta \right) } \\ \mathrm{i} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) &= -2\sin{ \left( \theta \right) } \\ \sin{ \left( \theta \right) } &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) \\ \\ \sin{ \left( \mathrm{i} \right) } &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{\mathrm{i}^2} - \mathrm{e}^{-\mathrm{i}^2} \right) \\ &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{-1} - \mathrm{e}^{1} \right) \\ &= \frac{\mathrm{i}}{2} \left( \mathrm{e}^{1} - \mathrm{e}^{-1} \right) \\ &= \mathrm{i}\sinh{ \left( 1 \right) } \end{align*}$

Thus:

$\displaystyle \begin{align*} \cos{ \left( 1 + \mathrm{i} \right) } &= \cos{ \left( 1 \right) } \cos{ \left( \mathrm{i} \right) } - \sin{ \left( 1 \right) } \sin{ \left( \mathrm{i} \right) } \\ &= \cos{ \left( 1 \right) } \cosh{ \left( 1 \right) } - \sin{ \left( 1 \right) } \left[ \mathrm{i}\sinh{ \left( 1 \right) } \right] \\ &= \cos{ \left( 1 \right) } \cosh{ \left( 1 \right) } - \mathrm{i} \sin{ \left( 1 \right) } \sinh{ \left( 1 \right) } \end{align*}$

i don't understand why it became

$i(e^{i\theta}-e^{-i\theta})=2\sin\theta$

may be you mean

$\frac{(e^{i\theta}-e^{-i\theta})}{i}=2\sin\theta$
 
Last edited:
  • #5
paulmdrdo said:
how would you express that in rectangular form?
He did. The last line reads as a + i b. (cos(1)cosh(1)) - i (sin(1)sinh(1))

-Dan
 
  • #6
paulmdrdo said:
i don't understand why it became

$i(e^{i\theta}-e^{-i\theta})=2\sin\theta$

may be you mean

$\frac{(e^{i\theta}-e^{-i\theta})}{i}=2\sin\theta$

It didn't.
It became:
$$i(e^{i\theta}-e^{-i\theta})=-2\sin\theta$$
This is the result of multiplying left and right with $i$.

Btw, note that $\frac 1 i = -i$, so this fits with what you were thinking.
 
  • #7
paulmdrdo said:
Evaluate the following expressions, expressing answers in rectangular form.

1. $\cos(1+j)$
2.$\sinh(4-j3)$

can you help me on how to solve these problems.

thanks in advance!

$\displaystyle \begin{align*} \sinh{ \left( 4 - 3\mathrm{i} \right) } &= \frac{1}{2} \left[ \mathrm{e}^{4 - 3\mathrm{i}} - \mathrm{e}^{- \left( 4 - 3\mathrm{i} \right) } \right] \\ &= \frac{1}{2} \left( \mathrm{e}^{4 - 3\mathrm{i}} - \mathrm{e}^{-4 + 3\mathrm{i}} \right) \\ &= \frac{1}{2} \left\{ \mathrm{e}^4 \left[ \cos{ \left( -3 \right) } + \mathrm{i}\sin{ \left( - 3 \right) } \right] - \mathrm{e}^{-4} \left[ \cos{ \left( 3 \right) } + \mathrm{i} \sin{ \left( 3 \right) } \right] \right\} \\ &= \frac{1}{2} \left\{ \mathrm{e}^4 \left[ \cos{ (3) } - \mathrm{i}\sin{(3)} \right] - \mathrm{e}^{-4} \left[ \cos{(3)} + \mathrm{i}\sin{(3)} \right] \right\} \\ &= \frac{1}{2} \left[ \mathrm{e}^4\cos{ \left( 3 \right) } - \mathrm{i}\,\mathrm{e}^4 \sin{ (3) } - \mathrm{e}^{-4}\cos{(3)} - \mathrm{i}\,\mathrm{e}^{-4}\sin{(3)} \right] \\ &= \frac{1}{2} \left[ \cos{(3)} \left( \mathrm{e}^4 - \mathrm{e}^{-4} \right) - \mathrm{i} \sin{(3)} \left( \mathrm{e}^4 + \mathrm{e}^{-4} \right) \right] \\ &= \cos{(3)} \left[ \frac{1}{2} \left( \mathrm{e}^{4} - \mathrm{e}^{-4} \right) \right] - \mathrm{i} \sin{(3)} \left[ \frac{1}{2} \left( \mathrm{e}^4 + \mathrm{e}^{-4} \right) \right] \\ &= \cos{(3)} \sinh{(4)} - \mathrm{i}\sin{(3)}\cosh{(4)} \end{align*}$
 

FAQ: Therefore, $\sinh{(4-j3)} = \cos{(3)}\sinh{(4)} - \mathrm{i}\sin{(3)}\cosh{(4)}$

What are complex numbers?

Complex numbers are numbers that have both a real and imaginary component. They are written in the form a + bi, where a is the real part and bi is the imaginary part with i representing the square root of -1.

How do you add and subtract complex numbers?

To add or subtract complex numbers, you simply add or subtract the real parts and the imaginary parts separately. For example, (2 + 3i) + (5 + 2i) = (2+5) + (3i+2i) = 7 + 5i.

What is the difference between a complex number and a real number?

A real number is any number that can be represented on a number line, while a complex number includes the additional imaginary component. Real numbers can also be written in decimal form, while complex numbers are typically written in the form a + bi.

How do you multiply and divide complex numbers?

To multiply complex numbers, you use the FOIL method, or the distributive property. For example, (2 + 3i)(5 + 2i) = 2(5) + 2(2i) + 3i(5) + 3i(2i) = 10 + 4i + 15i + 6i^2 = 10 + 19i - 6 = 4 + 19i. To divide complex numbers, you can use the conjugate of the denominator to rationalize the expression.

How are complex numbers used in real life?

Complex numbers are used in a variety of fields, including physics, engineering, and finance. They are used to describe the behavior of alternating currents in electrical circuits, analyze vibrations in mechanical systems, and model complex financial transactions. They are also used in computer graphics to represent points in a 3D space.

Similar threads

Back
Top