- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks again to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Evaluate $\displaystyle\lim_{x\to 0^{+}}\left(\int_{x}^{1}\dfrac{\ln{(1+t)}}{\sqrt{t}}dt+\int_{0}^{x}\dfrac{\sin{2t}}{\sqrt{4+t^2}\int_{0}^{x}(\sqrt{y+1}-1)dy}dt\right)$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Problem: Evaluate $\displaystyle\lim_{x\to 0^{+}}\left(\int_{x}^{1}\dfrac{\ln{(1+t)}}{\sqrt{t}}dt+\int_{0}^{x}\dfrac{\sin{2t}}{\sqrt{4+t^2}\int_{0}^{x}(\sqrt{y+1}-1)dy}dt\right)$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!