Thermal exchange between warm object and ideal gas

In summary, the thermal exchange between a warm object and an ideal gas involves the transfer of heat energy from the object to the gas, resulting in changes in temperature and pressure of the gas. This process is governed by the principles of thermodynamics, where the warm object loses thermal energy, causing its temperature to decrease, while the ideal gas absorbs this energy, leading to an increase in its temperature and possibly its volume. The efficiency of this heat transfer is influenced by factors such as the temperature difference, the specific heat capacity of the gas, and the surface area of contact between the two.
  • #1
JayBi
2
0
Homework Statement
A warm object of mass m and thermal and specific heat c, with temperature T2, is inserted in an adiabatic chamber filled with 1 mol of an ideal (monoatomic) gas at a temperature T1 and atmospheric pressure.
Let T2 > T1.
The chamber has a massless piston, moving without friction.
Considering neglectable the volume of the object, find the equilibrium temperature.
Relevant Equations
1st principle of thermodynamics
Equation of state of an ideal gas
The total variation of internal energy states
##\Delta U_{tot} = 0##
##\Delta U_{tot} = \Delta U_{ext} + \Delta U_{gas} + \Delta U_{obj}##
with:
##\Delta U_{ext} = Q_{ext} - W_{ext} = -W_{ext}##
##\Delta U_{gas} = Q_{gas} - W_{gas} = Q_{gas} - ( - W_{ext} ) = Q_{gas} + W_{ext}##
##\Delta U_{obj} = Q_{obj} - W_{obj} = Q_{obj}##
hence
##0 = ( - W_{ext} ) + ( Q_{gas} + W_{ext} ) + ( Q_{obj})##
##0 = Q_{gas} + Q_{obj}##
Being
##\Delta U_gas = n c_v (T_eq - 1) = Q_gas + W_ext = Q_gas - p_atm (V_eq - V_1) = Q_gas - n R (T_eq - T1)##
We get
##Q_{gas} = n (cv + R) (T_{eq} - T_1) = n cp (T_{eq} - T_1)##
And being
##Q_{obj} = c m (T_eq - T_2)##
We finally get
##T_{eq} = \frac{n cp T_1 + c m T_2}{n cp + c m}##

My question is: the conservation of the internal energy applies as I showed or should I use it for the object and the gas only:
##\Delta U_{gas} + \Delta U_{ext} = 0##
##n cv (T_{eq} - T_1) + c m (T_eq - T_2) = 0##
Arriving at:
##T_{eq} = \frac{n cv T_1 + c m T_2}{n cv + c m}##
With similar steps?
Thanks
 
Physics news on Phys.org
  • #2
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
 
  • Like
Likes JayBi
  • #3
vela said:
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
Thank you Vela!
My doubt started following the first principle, that links internal energy, not heat directly.
Considering the whole system (gas + body + external) seemed the right approach.
Thank you
 
Back
Top