- #1
JayBi
- 2
- 0
- Homework Statement
- A warm object of mass m and thermal and specific heat c, with temperature T2, is inserted in an adiabatic chamber filled with 1 mol of an ideal (monoatomic) gas at a temperature T1 and atmospheric pressure.
Let T2 > T1.
The chamber has a massless piston, moving without friction.
Considering neglectable the volume of the object, find the equilibrium temperature.
- Relevant Equations
- 1st principle of thermodynamics
Equation of state of an ideal gas
The total variation of internal energy states
##\Delta U_{tot} = 0##
##\Delta U_{tot} = \Delta U_{ext} + \Delta U_{gas} + \Delta U_{obj}##
with:
##\Delta U_{ext} = Q_{ext} - W_{ext} = -W_{ext}##
##\Delta U_{gas} = Q_{gas} - W_{gas} = Q_{gas} - ( - W_{ext} ) = Q_{gas} + W_{ext}##
##\Delta U_{obj} = Q_{obj} - W_{obj} = Q_{obj}##
hence
##0 = ( - W_{ext} ) + ( Q_{gas} + W_{ext} ) + ( Q_{obj})##
##0 = Q_{gas} + Q_{obj}##
Being
##\Delta U_gas = n c_v (T_eq - 1) = Q_gas + W_ext = Q_gas - p_atm (V_eq - V_1) = Q_gas - n R (T_eq - T1)##
We get
##Q_{gas} = n (cv + R) (T_{eq} - T_1) = n cp (T_{eq} - T_1)##
And being
##Q_{obj} = c m (T_eq - T_2)##
We finally get
##T_{eq} = \frac{n cp T_1 + c m T_2}{n cp + c m}##
My question is: the conservation of the internal energy applies as I showed or should I use it for the object and the gas only:
##\Delta U_{gas} + \Delta U_{ext} = 0##
##n cv (T_{eq} - T_1) + c m (T_eq - T_2) = 0##
Arriving at:
##T_{eq} = \frac{n cv T_1 + c m T_2}{n cv + c m}##
With similar steps?
Thanks
##\Delta U_{tot} = 0##
##\Delta U_{tot} = \Delta U_{ext} + \Delta U_{gas} + \Delta U_{obj}##
with:
##\Delta U_{ext} = Q_{ext} - W_{ext} = -W_{ext}##
##\Delta U_{gas} = Q_{gas} - W_{gas} = Q_{gas} - ( - W_{ext} ) = Q_{gas} + W_{ext}##
##\Delta U_{obj} = Q_{obj} - W_{obj} = Q_{obj}##
hence
##0 = ( - W_{ext} ) + ( Q_{gas} + W_{ext} ) + ( Q_{obj})##
##0 = Q_{gas} + Q_{obj}##
Being
##\Delta U_gas = n c_v (T_eq - 1) = Q_gas + W_ext = Q_gas - p_atm (V_eq - V_1) = Q_gas - n R (T_eq - T1)##
We get
##Q_{gas} = n (cv + R) (T_{eq} - T_1) = n cp (T_{eq} - T_1)##
And being
##Q_{obj} = c m (T_eq - T_2)##
We finally get
##T_{eq} = \frac{n cp T_1 + c m T_2}{n cp + c m}##
My question is: the conservation of the internal energy applies as I showed or should I use it for the object and the gas only:
##\Delta U_{gas} + \Delta U_{ext} = 0##
##n cv (T_{eq} - T_1) + c m (T_eq - T_2) = 0##
Arriving at:
##T_{eq} = \frac{n cv T_1 + c m T_2}{n cv + c m}##
With similar steps?
Thanks