Thermal Physics- Can you make good tea at a certain temperature

In summary, the experts say that good tea can only be made at temperatures greater than 96 degrees celsius. To find out if this is true at an elevation of 4.5km, the Clausius-Clapeyron equation can be used: ln(P1/P2) = (Hvap/R)(1/T2 - 1/T1). The P's represent the vapor pressures, with one being the pressure at the high altitude location and the other being the pressure at normal conditions (101 KPa). The temperature at the high altitude can be found by solving for T2, using the known values of P1, P2, and T1 (100 degrees Celsius). This can then be compared to the boiling
  • #1
H.fulls
19
0

Homework Statement


According to experts good tea can only be made at temperatures greater than 96 degrees celsius. If this is true, can you brew good tea at elevation 4.5km (Pressure = 6.2*[itex]10^{4}[/itex]Pa) . Given that latent heat of vaporisation for water is 2.4*[itex]10^{6}[/itex] J/kg and water has a molar mass of 18g.


Homework Equations


Clausius-clapeyron equation [itex]\frac{dp}{dT}[/itex] = [itex]\frac{L}{T(V2-V1)}[/itex]
but V1 is negligable so [itex]\frac{dp}{dT}[/itex] = [itex]\frac{L}{TV2}[/itex]

Ideal gas equation pV=nRT


The Attempt at a Solution



Tried to integrate so have [itex]\int\frac{1}{p}dp[/itex]=[itex]\frac{L}{R}[/itex][itex]\int\frac{1}{T^{2}}dT[/itex]
from substituting in V = [itex]\frac{RT}{p}[/itex] from ideal gas equation.
But don't really know what to do from here! I don't know what limits to put in for the integral or if I am just going about this all wrong from the start!
Ive been told the clausius-clapeyron statement must be used by my professor!
Any suggestions would be helpful! Thankyou!
 
Physics news on Phys.org
  • #2
H.fulls said:

Homework Statement


According to experts good tea can only be made at temperatures greater than 96 degrees celsius. If this is true, can you brew good tea at elevation 4.5km (Pressure = 6.2*[itex]10^{4}[/itex]Pa) . Given that latent heat of vaporisation for water is 2.4*[itex]10^{6}[/itex] J/kg and water has a molar mass of 18g.


Homework Equations


Clausius-clapeyron equation [itex]\frac{dp}{dT}[/itex] = [itex]\frac{L}{T(V2-V1)}[/itex]
but V1 is negligable so [itex]\frac{dp}{dT}[/itex] = [itex]\frac{L}{TV2}[/itex]

Ideal gas equation pV=nRT


The Attempt at a Solution



Tried to integrate so have [itex]\int\frac{1}{p}dp[/itex]=[itex]\frac{L}{R}[/itex][itex]\int\frac{1}{T^{2}}dT[/itex]
from substituting in V = [itex]\frac{RT}{p}[/itex] from ideal gas equation.
But don't really know what to do from here! I don't know what limits to put in for the integral or if I am just going about this all wrong from the start!
Ive been told the clausius-clapeyron statement must be used by my professor!
Any suggestions would be helpful! Thankyou!

Hi H.fulls, Welcome to Physics Forums.

You might be interested having a look at the following arrangement of the clausius-clapeyron relationship:
$$ ln\left(\frac{P_1}{P_2}\right) = \frac{H_{vap}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$
Where the P's are the vapor pressures and the T's the temperatures (in K).
 
  • #3
Thanks! :)

I was getting this integral before but not sure what to do with it! And is [itex]H_{vap}[/itex] the same as my latent heat value? I have no idea what values to use for [itex]P_{1}[/itex], [itex]P_{2}[/itex], [itex]T_{1}[/itex] or [itex]T_{2}[/itex] :S
 
  • #4
H.fulls said:
Thanks! :)

I was getting this integral before but not sure what to do with it! And is [itex]H_{vap}[/itex] the same as my latent heat value? I have no idea what values to use for [itex]P_{1}[/itex], [itex]P_{2}[/itex], [itex]T_{1}[/itex] or [itex]T_{2}[/itex] :S

Yes, Hvap is the latent heat of vaporization. The P's are the vapor pressures at temperatures T1 and T2. What do you know about the relationship between ambient atmospheric pressure and vapor pressure of a fluid at its boiling point?
 
  • #5
Ah okay :) Erm..nothing probably! But I seem to recall that the ambient pressure and pressure at boiling point are the same? maybe... ? haha :)
 
  • #6
H.fulls said:
Ah okay :) Erm..nothing probably! But I seem to recall that the ambient pressure and pressure at boiling point are the same? maybe... ? haha :)

Yup.
 
  • #7
But if the pressures are the same does that not make the left hand side ln(1) =0! ?
 
  • #8
H.fulls said:
But if the pressures are the same does that not make the left hand side ln(1) =0! ?

Why do say that the pressures are the same? The atmospheric pressure is different for the two cases.
 
  • #9
Ah okay so the P's denote just the atmospheric pressure? I know the pressure for not boiling, but I don't know the pressure for when it is boiling! So confused by this question!
 
  • #10
H.fulls said:
Ah okay so the P's denote just the atmospheric pressure? I know the pressure for not boiling, but I don't know the pressure for when it is boiling! So confused by this question!

The P's represent vapor pressures. But, as you already mentioned previously, the vapor pressure at the boiling point is equal to the ambient air pressure... so they have the same values.
 
  • #11
so the vapour pressure at boiling point is the pressure I originally gave in my question?
 
  • #12
H.fulls said:
so the vapour pressure at boiling point is the pressure I originally gave in my question?

Yes, that's one of them (the pressure at the high altitude location for which you want to find the corresponding boiling temperature). What's the other pressure/temperature pair?
 
  • #13
Ahh okay.. is the other pair the boiling temperature and pressure for normal conditions? i.e 100 degrees and 101 KPa ?
 
  • #14
H.fulls said:
Ahh okay.. is the other pair the boiling temperature and pressure for normal conditions? i.e 100 degrees and 101 KPa ?

Yes, of course.
 
  • #15
Ahhhh okay! I finally understand! Thanks so much for your help :) !
 

FAQ: Thermal Physics- Can you make good tea at a certain temperature

What is the ideal temperature for making a good cup of tea?

The ideal temperature for making tea depends on the type of tea you are brewing. Generally, black teas are best brewed at around 212°F (100°C), green teas at 160-180°F (71-82°C), and white teas at 140-160°F (60-71°C). However, it's always best to follow the specific instructions for your specific tea.

Can using water at a higher temperature speed up the brewing process?

Yes, using hotter water can speed up the brewing process. However, it can also result in a more bitter and astringent taste. It's best to stick to the recommended temperature for your specific tea to achieve the best flavor.

Does the type of water used affect the taste of the tea?

Yes, the type of water used can affect the taste of the tea. Hard water with high mineral content can result in a less flavorful tea, while soft water can enhance the flavors. It's best to use filtered or spring water for the best taste.

Can the temperature of the water affect the health benefits of tea?

Yes, the temperature of the water can affect the health benefits of tea. For example, brewing green tea at too high of a temperature can destroy some of the beneficial compounds, resulting in a less healthy tea. It's important to follow the recommended temperatures for each type of tea to get the most health benefits.

Is it possible to reheat tea that has gone cold?

While it is possible to reheat tea that has gone cold, it's not recommended. Reheating tea can result in a loss of flavor and can make the tea taste bitter. It's best to brew a fresh cup if your tea has gone cold.

Similar threads

Back
Top