A Thermal stresses in the stress tensor

  • A
  • Thread starter Thread starter hunt_mat
  • Start date Start date
  • Tags Tags
    Mechanical Thermal
AI Thread Summary
The discussion centers on incorporating thermal stresses into the mechanical stress tensor for viscous flow. The original equation presented is deemed appropriate for incompressible fluids, but corrections are suggested for compressible fluids, particularly regarding thermal expansion effects. The correct formulation for a compressible viscous fluid includes terms for both pressure and shear stress, with thermal effects typically considered negligible. However, the user seeks to couple temperature changes directly to the Navier equations, indicating a focus on thermal stresses rather than expansion. The conversation highlights the complexities of modeling thermal effects in fluid dynamics, especially in applications like sintering.
hunt_mat
Homework Helper
Messages
1,816
Reaction score
33
TL;DR Summary
How to I include thermal stresses in the stress tensor
Suppose I have a mechanical stress tensor \sigma. Say I have the stress tensor for viscous flow:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
If the thermal flux is given by \boldsymbol{\sigma}_{th}=\alpha T\mathbf{I}, so I have a total flux as:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})+\alpha T\mathbf{I}
Is this correct?
 
Physics news on Phys.org
hunt_mat said:
TL;DR Summary: How to I include thermal stresses in the stress tensor

Suppose I have a mechanical stress tensor \sigma. Say I have the stress tensor for viscous flow:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
If the thermal flux is given by \boldsymbol{\sigma}_{th}=\alpha T\mathbf{I}, so I have a total flux as:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})+\alpha T\mathbf{I}
Is this correct?
Your original equation is for an incompressible fluid.
 
The correct equation for a compressible viscous fluid without thermal expansion is \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }\nabla \centerdot \mathbf u)\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
With thermal expansion, this becomes \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }(\nabla \centerdot \mathbf u-\alpha \frac{D T}{Dt}))\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})The thermal expansion term is usually considered negligible in determining the stress.
 
Last edited:
Chestermiller said:
The correct equation for a compressible viscous fluid without thermal expansion is \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }\nabla \centerdot \mathbf u)\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
With thermal expansion, this becomes \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }\nabla \centerdot \mathbf u-\alpha \frac{\partial T}{\partial t})\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})The thermal expansion term is usually considered negligible in determining the stress.
Hi, thanks for your reply. I'm not interested in expansion, but thermal stresses within a material. I want temperature to be coupled to Navier's equations. I would include the \partial_{t}T term as part of the stress tensor to fully couple the derivative?

I'm thinking of sintering with this application, and how thermal expansion affects everything.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top