- #1
- 23,583
- 5,819
I have a reversible chemical reaction described by the balanced equation: ##aA+bB=cC+dD##. I devise a reversible process to take a closed system containing these species (and its surroundings) from thermodynamic equilibrium state 1 to thermodynamic equilibrium state 2:
State 1: a moles of pure A and b moles of pure B at their standard states of 298 K and 1 bar
State 2: c moles of pure C and d moles of pure D at their standard states of 298 K and 1 bar
For each of the four species, I have data on the entropies of formation ##S_f^0## and the heats of formation at the standard states ##H_f^0##. In the process, the four species can be considered to behave as ideal gases.
What is the change in entropy of my system for the reversible process I have devised?
What is the change in entropy of the surroundings for the reversible process I have devised?
What is the change in entropy of the universe for the reversible process I have devised?
What could the reversible process be that I have devised?
If the pressures in states 1 and 2 are the same, why is the change in entropy of the system not equal to the change in enthalpy divided by the temperature?
Why is the change in entropy of the surroundings not equal to minus the change in enthalpy of the system divided by the temperature?
Good luck. It took me 2 days to work this out.
State 1: a moles of pure A and b moles of pure B at their standard states of 298 K and 1 bar
State 2: c moles of pure C and d moles of pure D at their standard states of 298 K and 1 bar
For each of the four species, I have data on the entropies of formation ##S_f^0## and the heats of formation at the standard states ##H_f^0##. In the process, the four species can be considered to behave as ideal gases.
What is the change in entropy of my system for the reversible process I have devised?
What is the change in entropy of the surroundings for the reversible process I have devised?
What is the change in entropy of the universe for the reversible process I have devised?
What could the reversible process be that I have devised?
If the pressures in states 1 and 2 are the same, why is the change in entropy of the system not equal to the change in enthalpy divided by the temperature?
Why is the change in entropy of the surroundings not equal to minus the change in enthalpy of the system divided by the temperature?
Good luck. It took me 2 days to work this out.
Last edited: