- #1
ryley
- 20
- 2
I'm having trouble wrapping my head around some thermodynamics and ideal gas law concepts. I don't have a specific textbook question but Just a concept I'm having trouble with.
What I'm struggling with is understanding some of the relations between pressure, volume and temperature. Specifically, if a gas is compressed it heats up because the molecules are colliding more often causing an increase in internal energy. But if that process adds heat to the gas and increase in temperature how is it then that compression of a gas turns in into a liquid? Correct me if I'm wrong but if state change occurs from gas to liquid through a lowering of temperature, therefore the molecules come closer, which according the the ideal gas law will increase heat, how then does a liquid form if the internal energy is greater than before? Thanks for the help!
[Moderator's note: Moved from a homework forum.]
What I'm struggling with is understanding some of the relations between pressure, volume and temperature. Specifically, if a gas is compressed it heats up because the molecules are colliding more often causing an increase in internal energy. But if that process adds heat to the gas and increase in temperature how is it then that compression of a gas turns in into a liquid? Correct me if I'm wrong but if state change occurs from gas to liquid through a lowering of temperature, therefore the molecules come closer, which according the the ideal gas law will increase heat, how then does a liquid form if the internal energy is greater than before? Thanks for the help!
[Moderator's note: Moved from a homework forum.]
Last edited by a moderator: