- #1
amjad-sh
- 246
- 13
Homework Statement
(a) Deduce from the thermodynamics identities:
##c_v=(\frac {\partial u}{\partial T})_n=T(\frac{\partial s}{\partial T})_n##
and equations: ##f(ε)=\frac {1}{e^{ε-μ/k_BT}+1}##
and ##u=\int \frac{1}{4π^3}ε(k)f(ε(k)) \, {d \vec k}##
and from the third law of thermodynamics(s→0 asT→0)
that the entropy density is given by:
##s=-K_B\int \frac{1}{4π^3}[f\ln f +(1-f)\ln(1-f)] \, {d \vec k}##
Homework Equations
The Attempt at a Solution
[/B]I tried to calculate ##(\frac {\partial u}{\partial T})_n## first
I used ##\frac{\partial u}{\partial T}=\frac{\partial u}{\partial \beta}\frac{\partial \beta}{\partial T}##
where##\frac{\partial \beta}{\partial T}= \frac{-1}{K_BT^2}##
now ##\frac{\partial u}{\partial \beta}=\frac{\partial }{\partial \beta}\int \frac{1}{4π^3}ε(k)\frac {1}{e^{ε-μ/k_BT}+1} \, {d \vec k}##
then##\frac{\partial u}{\partial \beta}=\int \frac{1}{4π^3}ε\frac {(ε-μ)e^{(ε-μ)\beta}}{(e^{(ε-μ)/k_BT}+1)^2} \, {d \vec k}##
##\frac{\partial u}{\partial T}=-K_B\int \frac{1}{4π^3}ε\frac {(\beta)^2(ε-μ)e^{(ε-μ)\beta}}{(e^{(ε-μ)/k_BT}+1)^2} \, {d \vec k}##
I reached to this part and then couldn't continue further.