- #36
Wi_N
- 119
- 8
archaic said:I do not think that this is rigorous but it is intuitive.
$$
\lim_{x\to\infty}\frac{2x^3+x+6}{x^3}
=\lim_{x\to\infty}\frac{x^3(2+\underbrace{\frac{x}{x^3}}_\text{goes to 0}+\underbrace{\frac{6}{x^3}}_\text{goes to 0})}{x^3}=2\\
\Leftrightarrow \lim_{x\to\infty}\frac{2x^3+x+6}{x^3}=2\\
\Leftrightarrow \frac{\lim_{x\to\infty}2x^3+x+6}{\lim_{x\to\infty}x^3}=2\\
\Leftrightarrow \lim_{x\to\infty}2x^3+x+6=2\lim_{x\to\infty}x^3\\
\Leftrightarrow \lim_{x\to\infty}2x^3+x+6=\lim_{x\to\infty}2x^3
$$
problem i had was that they told me i can't eliminate terms unless I am transitioning fully off the limit. mixed signals.