MHB This suggests that both H and K are normal subgroups of L. What am I missing?

11hannab
Messages
1
Reaction score
0
Question about matrix groups and conjugate subgroups?

This question concerns the group of matrices
L = { (a 0)
(c d) : a,c,d ∈ R, ad =/ 0}
under matrix multiplication, and its subgroups
H = { (p 0, (p - q) q) : p,q ∈ R, pq =/ 0} and K = { (1 0, r 1) : r ∈ R}Show that one of H and K is a normal subgroup of L and that the other is not.

Any pointers would be fantastic! Struggling and is from a previous assignment but just can't seem to figure this out?!
I understand that klk^-1 gives a lower triangular matric similar to L. Which would be this is a subgroup of L

But when i multiply together lhl-1 is seem to also get a lower traingular matrix?

Any pointer to where i am going wrong?
 
Physics news on Phys.org
It seems to me that for every $a$, $c$ and $d$ and for every $r$ there exists an $r'$ such that
\[
\begin{pmatrix}a&0\\c&d\end{pmatrix} \begin{pmatrix}1&0\\r&1\end{pmatrix} = \begin{pmatrix}1&0\\r'&1\end{pmatrix} \begin{pmatrix}a&0\\c&d\end{pmatrix}
\]
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top