- #1
Hill
- 728
- 573
- Homework Statement
- Find the geometric configuration of the points a, b, and c if (see equation below)
- Relevant Equations
- (b-a)/(c-a)=(a-c)/(b-c)
##arg((b-a)/(c-a))## is an angle between ##ab## and ##ac##.
##arg((a-c)/(b-c))## is an angle between ##ca## and ##cb##.
For them to be equal, ##b## has to be equidistant from ##a## and ##c##, i.e. ##|b-a|=|b-c|##.
Then the equation for distances becomes, ##|b-a|/|c-a|=|c-a|/|b-a|##.
Thus, ##|c-a|=|b-a|=|b-c|##.
My answer, equilateral triangle.
Are there other possibilities or constrains?
##arg((a-c)/(b-c))## is an angle between ##ca## and ##cb##.
For them to be equal, ##b## has to be equidistant from ##a## and ##c##, i.e. ##|b-a|=|b-c|##.
Then the equation for distances becomes, ##|b-a|/|c-a|=|c-a|/|b-a|##.
Thus, ##|c-a|=|b-a|=|b-c|##.
My answer, equilateral triangle.
Are there other possibilities or constrains?
Last edited: