- #1
swevener
- 21
- 0
Homework Statement
A boy stands at the peak of a hill which slopes downward uniformly at angle ##\phi##. At what angle ##\theta## from the horizontal should he throw a rock so that it has the greatest range?
Homework Equations
##\mathbf{s} = \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2##
##\mathbf{v} = \mathbf{v}_0 + \mathbf{a} t##
The Attempt at a Solution
First I tilted the reference frame so the sloping hill is horizontal and the initial velocity is at an angle ##\theta + \phi## from the ground. This makes the acceleration ##\mathbf{a} = g \sin(\phi) \hat{\imath} - g \cos(\phi) \hat{\jmath}##. So position is given by
[tex]\mathbf{s} = \left[ v_0 t \cos(\theta + \phi) + \frac12 g t^2 \sin(\phi) \right] \hat{\imath} + \left[ v_0 t \sin(\theta + \phi) - \frac12 g t^2 \cos(\phi) \right] \hat{\jmath}.[/tex] Taking the derivative with respect to time,
[tex]\mathbf{v} = \left[ v_0 \cos(\theta + \phi) + g t \sin(\phi) \right] \hat{\imath} + \left[ v_0 \sin(\theta + \phi) - g t \cos(\phi) \right] \hat{\jmath}.[/tex]Setting the vertical component of velocity equal to zero gives half the total flight time:
[tex]t_{\text{max}} = \frac{v_0 \sin(\theta + \phi)}{g \cos(\theta)}.[/tex] Plugging ##2 t_{\text{max}}## into the horizontal component of ##\mathbf{s}## gives the distance traveled:
[tex]\begin{align}s_x (2 t_{\text{max}}) &= v_0 \frac{2 v_0 \sin(\theta + \phi)}{g \cos(\phi)} \cos(\theta + \phi) + \frac12 g \sin(\phi) \frac{4 v_0^2 \sin^2(\theta + \phi)}{\cos^2(\phi)} \\
&= \frac{2 v_0^2}{g \cos(\phi)} [ \sin(\theta + \phi) \cos(\theta + \phi) + \sin^2(\theta + \phi) \tan(\phi) ].\end{align}[/tex]
To find the optimal ##\theta## for a given ##\phi##, take
[tex]\begin{align}\frac{\text{d}}{\text{d} \theta} s_x (2 t_{\text{max}}) = 0 &= \cos(\theta + \phi) \cos(\theta + \phi) - \sin(\theta + \phi) \sin(\theta + \phi) + 2 \sin(\theta + \phi) \cos(\theta + \phi) \tan(\phi) \\
&= \cos^2(\theta + \phi) - \sin^2(\theta + \phi) + \sin(2(\theta + \phi)) \tan(\phi) \\
&= \cos(2(\theta + \phi)) + \sin(2(\theta + \phi)) \tan(\phi).\end{align}[/tex] A bit of algebra gives
[tex]\tan(2(\theta + \phi)) = - \cot(\phi),[/tex] which results in an equation for ##\theta##
[tex]\theta = \frac12 \arctan(-\cot(\phi)) - \phi.[/tex]
Now, the book's hint was that when ##\phi## is 60º, ##\theta## should be 15º. My equation spits out -75º, which has the slight problem of meaning the boy would be throwing the rock through the hill. So my question is why am I off by 90º? Did I make a mistake in my math somewhere? Does it have to do with rotating my reference frame?
Last edited: