MHB Throwing sandbags out of air balloon

  • Thread starter Thread starter mathmaniac1
  • Start date Start date
  • Tags Tags
    Air Balloon
AI Thread Summary
An air balloon descending with acceleration 'a' experiences an upward acceleration after a mass 'm' is dropped from it. The correct expression for 'm' in terms of the balloon's mass 'M' and acceleration 'a' is derived as m = 2Ma/(g+a). The discussion highlights confusion around the application of Newton's third law and the forces acting on the balloon before and after the mass is released. A detailed derivation clarifies that the thrust remains constant and the gravitational force decreases when the mass is dropped. This understanding resolves the initial confusion regarding the forces involved in the scenario.
mathmaniac1
Messages
158
Reaction score
0
An air balloon of mass M descending down with acceleration 'a'.A mass m is dropped out of it and the acceleration becomes a upwards.Find m in terms of M,a...

The right answer is 2Ma/(g+a)

The explanation I was given:
The mass out of the balloon now has a+g acceleration.
(How could it be when g was already a part of a?)
The 'action'=m(a+g)
Reaction=Change in force=2Ma-(-2Ma)=2Ma
2Ma=m(a+g)---->Newton's third law.
(Wait,final force=(M-m)a,why not?could it be that it was just ignored?)
(I don't get how they can be identified as action and reaction forces)
m=2Ma/(g+a)

Please help.
 
Mathematics news on Phys.org
Here's a derivation that you might find more intuitive (to be honest I also find the explanation given very poor and handwavy, even though it may be longer the proof below might help you see what's going on and why $g$ is taken into account).

First, assume that the engine which is imparting an acceleration to the balloon (i.e. helium lift or whatever) produces constant thrust upwards, denoted $F_\mathrm{thrust}$, and that the gravitational acceleration is downwards and is denoted $g$ (and is positive just for consistency with the question's sign conventions). The only assumption is that throwing the sandbag out does not change this thrust, which is reasonable and apparently correct (since sandbags generally do not interact with the engine, just dead weight).

Before the sandbag is released, the balloon has two forces acting on it, with a net force of:

$$F_i = F_\mathrm{thrust} - Mg$$

After the sandbag is released, the balloon still has the same thrust, but the gravitational force is less:

$$F_f = F_\mathrm{thrust} - (M - m)g$$

And so we know that the following holds:

$$F_\mathrm{thrust} = F_i + Mg = F_f + (M - m)g$$

But we also know from the question that $F_i = -Ma$, and $F_f = (M - m)a$. Substituting:

$$-Ma + Mg = (M - m)a + (M - m)g$$

$$M(g - a) = (M - m)(g + a)$$

And solving for $m$, the unknown mass:

$$M \frac{g - a}{g + a} = M - m$$

$$m = M - M \frac{g - a}{g + a} = M\left (1 - \frac{g - a}{g + a} \right ) = M \left ( \frac{g + a}{g + a} - \frac{g - a}{g + a} \right ) = M \left ( \frac{2a}{g + a} \right ) = \frac{2Ma}{g + a}$$

$$\blacksquare$$

(I'm actually shocked I got the derivation right so quickly, I'm usually crap at Newtonian physics. I guess playing KSP every now and then really does help :p).

 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top