- #1
Smattering
- 170
- 21
Dear all,
As far as I understand, for a distant observer, time stands still at the event horizon of a black hole, right? In particular, nothing will ever pass the EH. Instead, everything that approaches the BH will get stuck at the EH and stay there forever from the perspective of the distant observer.
That leads me to a couple of questions:
1. Under these conditions, are the usual depictions of a BH actually right? Should we really assume that a massive black hole must have a huge EH from the perspective of a distant observer? Or would it be possible that (from our perspective) Sagittarius A* is only a rather small BH with lots of stuff piled up at its EH. After all, the gravitational effects of the BH should not change too much if the majority of its mass is piled up at the EH, should they?
2. The light that a distant observer receives from objects near the EH would be extremely red-shifted. Now if we change perspectives, for an observer near the EH, the rest of the observable universe would be extremely blue-shifted. Actually, the observer near the EH would be bombed with intense gamma rays from everywhere else, wouldn't he? Does he even have a chance to survive this gamma ray inferno until he gets spaghettified by the gravitation of the BH?
3. Not only would the observer near the EH be bombed with gamma rays, he would also see the rest of the observable universe age in extremely fast motion, wouldn't he? He would probably see a firework of supernova explosions and maybe even the big freeze. Question: Can we calculate, how much time will elapse outside of the BH's gravitational field before an observer near the EH actually passes the EH?
Sorry in advance for any misconceptions.Robert
As far as I understand, for a distant observer, time stands still at the event horizon of a black hole, right? In particular, nothing will ever pass the EH. Instead, everything that approaches the BH will get stuck at the EH and stay there forever from the perspective of the distant observer.
That leads me to a couple of questions:
1. Under these conditions, are the usual depictions of a BH actually right? Should we really assume that a massive black hole must have a huge EH from the perspective of a distant observer? Or would it be possible that (from our perspective) Sagittarius A* is only a rather small BH with lots of stuff piled up at its EH. After all, the gravitational effects of the BH should not change too much if the majority of its mass is piled up at the EH, should they?
2. The light that a distant observer receives from objects near the EH would be extremely red-shifted. Now if we change perspectives, for an observer near the EH, the rest of the observable universe would be extremely blue-shifted. Actually, the observer near the EH would be bombed with intense gamma rays from everywhere else, wouldn't he? Does he even have a chance to survive this gamma ray inferno until he gets spaghettified by the gravitation of the BH?
3. Not only would the observer near the EH be bombed with gamma rays, he would also see the rest of the observable universe age in extremely fast motion, wouldn't he? He would probably see a firework of supernova explosions and maybe even the big freeze. Question: Can we calculate, how much time will elapse outside of the BH's gravitational field before an observer near the EH actually passes the EH?
Sorry in advance for any misconceptions.Robert