- #1
Foracle
- 30
- 8
- Homework Statement
- At time t=0, the wave function of a particle is
##\Psi(x,0)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##
##\alpha## and ##k_{0}## are real constants
What is the wavefunction at time t in momentum space, ##\tilde{\Psi}(k,t)##?
- Relevant Equations
- ##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##
##U(t,t_{0})=e^{-\frac{i}{\hbar}\hat{H}t} = e^{-\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}} ##
Since it asks for the time evolution of the wavefunction in the momentum space, I write : ##\tilde{\Psi}(k,t) = < p|U(t,t_{0})|\Psi> = < U^\dagger(t,t_{0})p|\Psi>##
Since ##U(t,t_{0})^\dagger = e^{\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}}##, the above equation becomes
##\tilde{\Psi}(k,t) = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} < p|\Psi> = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} \frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##
Evaluate this with ##\Psi(x)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##, I end up getting :
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{p^2t}{2m}}##
Since ##p=\hbar k##,
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{\hbar^2k^2t}{2m}}##
Is this the right way to solve this problem?
Since ##U(t,t_{0})^\dagger = e^{\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}}##, the above equation becomes
##\tilde{\Psi}(k,t) = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} < p|\Psi> = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} \frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##
Evaluate this with ##\Psi(x)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##, I end up getting :
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{p^2t}{2m}}##
Since ##p=\hbar k##,
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{\hbar^2k^2t}{2m}}##
Is this the right way to solve this problem?
Last edited: