Time period of 2 disks connected by a spring

AI Thread Summary
The discussion revolves around solving the time period of oscillations for two disks connected by a spring, specifically focusing on case B where the disks rotate in opposite directions. The user is struggling with deriving the angular SHM equation, finding that the angular acceleration is proportional to the cube of angular displacement, which does not conform to SHM. Suggestions were made to improve the clarity of the problem by using LaTeX for equations instead of an unreadable image. The user plans to create a new thread with a clearer representation of the problem. The conversation emphasizes the importance of clear communication in technical discussions.
Vivek33010
Messages
3
Reaction score
2
Homework Statement
2 identical disks (1 & 2) each of mass M and radius R are lying on a flat surface. They are free to rotate about their axis. They are connected by a spring of spring constant 'K'.
Find time period of small oscillations such that :-
Case A: spring 1 and 2 always rotate in same sense.
Case B: spring 1 and 2 always rotate in opposite sense.
Relevant Equations
torque(τ) = (radius vector)×(force vector)
torque(τ) = (moment of inertia I)(angular acceleration α)
Equation of angular SHM, α = -(ω^(2))(θ)
My attempt at solving case B

I've attached my attempt at case B above. What problem I'm facing is that after writing equation of angular SHM, I'm getting angular acceleration proportional to cube of angular displacement, which doesn't reduce to SHM. So how to find time period for this oscillations, or how to reduce it to SHM?Proper diagram with question
 
Physics news on Phys.org
Vivek33010 said:
Homework Statement:: 2 identical disks (1 & 2) each of mass M and radius R are lying on a flat surface. They are free to rotate about their axis. They are connected by a spring of spring constant 'K'.
Find time period of small oscillations such that :-
Case A: spring 1 and 2 always rotate in same sense.
Case B: spring 1 and 2 always rotate in opposite sense.
Relevant Equations:: torque(τ) = (radius vector)×(force vector)
torque(τ) = (moment of inertia I)(angular acceleration α)
Equation of angular SHM, α = -(ω^(2))(θ)

My attempt at solving case B

I've attached my attempt at case B above. What problem I'm facing is that after writing equation of angular SHM, I'm getting angular acceleration proportional to cube of angular displacement, which doesn't reduce to SHM. So how to find time period for this oscillations, or how to reduce it to SHM?Proper diagram with question
Welcome to PF. :smile:

Unfortunately, the image is unreadable. Maybe instead, check out the "LaTeX Guide" link below, and type your work into the Edit window? That makes it a lot easier to read and reply to. Thanks. :smile:

1619022424360.png
 
berkeman said:
Welcome to PF. :smile:

Unfortunately, the image is unreadable. Maybe instead, check out the "LaTeX Guide" link below, and type your work into the Edit window? That makes it a lot easier to read and reply to. Thanks. :smile:

View attachment 281834
I write a new question or just edit this one?
 
You can just reply below with the update to this problem. Or do you mean what you should do if you have a new/different question? In that case please start a new thread. Basically it is one thread per question/problem.
 
berkeman said:
You can just reply below with the update to this problem. Or do you mean what you should do if you have a new/different question? In that case please start a new thread. Basically it is one thread per question/problem.
I'll make a new thread, with the same question, but with better representation. I'll see if I can use latex because I don't know what it is. New thread coming right up
 
  • Like
Likes berkeman
Then I'll close this thread for now. Let me know if you want it back open (send me a message by clicking on my avatar and "Start a Conversation").
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top