- #1
brotherbobby
- 702
- 163
- TL;DR Summary
- To derive the polar unit vectors $$\boxed{\begin{align*}\hat{\rho}&=\cos\theta \;\hat{i}+\sin\theta \;{\hat j}\\
\hat{\phi}&=-\sin\theta \; \hat i+\cos\theta \; \hat j
\end{align*}}\quad\quad\large{\mathbf{(b)}}$$
using coordinates of a point under rotation : $$\begin{align*}x'&=\cos\theta \;x+\sin\theta \;y\\
y'&=-\sin\theta \; x+\cos\theta \; y
\end{align*}\quad\quad\large{\mathbf{(a)}}$$
y'&=-\sin\theta \; x+\cos\theta \; y
\end{align*}\quad\quad\large{\mathbf{(a)}}$$
##\small{\texttt{Can these (the above) be used to derive the (familiar) unit vectors using polar coordinates}}## :
\hat{\phi}&=-\sin\theta \; \hat i+\cos\theta \; \hat j
\end{align*}}\quad\quad\large{\mathbf{(b)}}$$ I ask because the equations look similar. However, as I show in my workings below, it is far from straightforward. Their (actual) derivation is quite different and doesn't use the rotated co-ordinates shown in ##\mathbf{(a)}## above.
Discussion : The way to go from ##\text{Fig. (2)}\rightarrow\text{Fig. (1)}## is to let ##\text{A}'\rightarrow\text{P}##. That would make ##y'=0\Rightarrow x\sin\theta=y\cos\theta## from ##\mathbf{(a)}## above. But this doesn't lead me anywhere towards deriving ##\mathbf{(b)}##.?
Can I use the equations of ##\mathbf{(a)}## to write ##x'\hat{i}'=\cos\theta x\hat i+\sin\theta y\hat j?## If so, then dividing throughout by ##x'##, we get : ##\hat{i}'=\frac{x}{x'}\cos\theta\hat i+\frac{y}{x'}\sin\theta \hat j##. This would imply ##\frac{x}{x'}=1=\frac{y}{x'}## which is clearly not true.
Request : A hint as to how to derive ##\mathbf{(b)}## from ##\mathbf{(a)}##.