To calculate the polar unit vectors using rotated coordinates

In summary, calculating polar unit vectors using rotated coordinates involves transforming Cartesian coordinates into polar coordinates through a rotation matrix. The polar unit vectors, typically denoted as \( \hat{r} \) and \( \hat{\theta} \), are derived by applying trigonometric functions based on the angle of rotation. This process allows for the representation of vectors in polar form, facilitating analysis in contexts where angular relationships are significant, such as in physics and engineering applications.
  • #1
brotherbobby
702
163
TL;DR Summary
To derive the polar unit vectors $$\boxed{\begin{align*}\hat{\rho}&=\cos\theta \;\hat{i}+\sin\theta \;{\hat j}\\

\hat{\phi}&=-\sin\theta \; \hat i+\cos\theta \; \hat j

\end{align*}}\quad\quad\large{\mathbf{(b)}}$$

using coordinates of a point under rotation : $$\begin{align*}x'&=\cos\theta \;x+\sin\theta \;y\\

y'&=-\sin\theta \; x+\cos\theta \; y

\end{align*}\quad\quad\large{\mathbf{(a)}}$$
1726582830959.png
We know that if cartesian coordinates ##(x,y)## (see figure alongside) are rotated to ##(x',y')## about the origin by an angle ##\theta## counter-clockwise as shown, the rotated coordinates are given by $$\begin{align*}x'&=\cos\theta \;x+\sin\theta \;y\\
y'&=-\sin\theta \; x+\cos\theta \; y
\end{align*}\quad\quad\large{\mathbf{(a)}}$$

##\small{\texttt{Can these (the above) be used to derive the (familiar) unit vectors using polar coordinates}}## :


1726582890040.png
$$\boxed{\begin{align*}\hat{\rho}&=\cos\theta \;\hat{i}+\sin\theta \;{\hat j}\\
\hat{\phi}&=-\sin\theta \; \hat i+\cos\theta \; \hat j
\end{align*}}\quad\quad\large{\mathbf{(b)}}$$ I ask because the equations look similar. However, as I show in my workings below, it is far from straightforward. Their (actual) derivation is quite different and doesn't use the rotated co-ordinates shown in ##\mathbf{(a)}## above.



Discussion : The way to go from ##\text{Fig. (2)}\rightarrow\text{Fig. (1)}## is to let ##\text{A}'\rightarrow\text{P}##. That would make ##y'=0\Rightarrow x\sin\theta=y\cos\theta## from ##\mathbf{(a)}## above. But this doesn't lead me anywhere towards deriving ##\mathbf{(b)}##.?

Can I use the equations of ##\mathbf{(a)}## to write ##x'\hat{i}'=\cos\theta x\hat i+\sin\theta y\hat j?## If so, then dividing throughout by ##x'##, we get : ##\hat{i}'=\frac{x}{x'}\cos\theta\hat i+\frac{y}{x'}\sin\theta \hat j##. This would imply ##\frac{x}{x'}=1=\frac{y}{x'}## which is clearly not true.

Request : A hint as to how to derive ##\mathbf{(b)}## from ##\mathbf{(a)}##.
 
Mathematics news on Phys.org
  • #2
In Fig.1 choose ##\theta## so that P is on x' axis then x',y' are ##\hat{\rho}##, ##\hat{\phi}##, with renaming ##\theta## with ##\phi##.
 

Similar threads

Replies
4
Views
2K
Replies
33
Views
4K
Replies
1
Views
1K
Replies
1
Views
853
Replies
13
Views
2K
Replies
10
Views
846
Replies
14
Views
1K
Back
Top