- #1
curious__
- 9
- 24
There are many core subjects that engineering and physics share, i.e. statics, dynamics, thermodynamics and electromagnetics.
As an engineering student, I obviously read engineering textbooks for the above-mentioned subjects, and (because of my strong feeling of interest) physics undergraduate textbooks.
Comparing them, well, the level of contents and mathematical rigour of the main texts were nearly the same, but I felt that physics books go somewhat deeper in the techniques of manipulation of mathematical expressions that lead to meaningful physical intuition. But still not quite big differences, and they actually complement each other.
Surprisingly, there are huge differences for the end of chapter problems - the feeling about engineering books is that the problems are very similar to what's in the high school physics problems. Not much algebra and maths, and a lot of numbers and calculations. But for physics books, it's like algebra and calculus 50% + physics 50%. And such problems usually have some meaningful physical interpretations associated with them, so they give us good lessons.
So, my way of learning physics became a combination of various steps like this:
1. Choose some textbooks that are intended for different majors and for different depths of understanding (e.g. if I were to learn about thermodynamics I pick up 'fundamentals of physics', engineering thermodynamics, thermal and statistical physics, physical chemistry books)
2. Try out various problems in a physics major book (in the above case thermal and statistical mechanics), of course with a solutions manual
3. In order to familiarise myself with putting actual numbers and doing calculations precisely and quickly, do some problems in an engineering physics book
Is there anybody else studying like me, or is everybody studying like me, or is nobody studying like me? :)
As an engineering student, I obviously read engineering textbooks for the above-mentioned subjects, and (because of my strong feeling of interest) physics undergraduate textbooks.
Comparing them, well, the level of contents and mathematical rigour of the main texts were nearly the same, but I felt that physics books go somewhat deeper in the techniques of manipulation of mathematical expressions that lead to meaningful physical intuition. But still not quite big differences, and they actually complement each other.
Surprisingly, there are huge differences for the end of chapter problems - the feeling about engineering books is that the problems are very similar to what's in the high school physics problems. Not much algebra and maths, and a lot of numbers and calculations. But for physics books, it's like algebra and calculus 50% + physics 50%. And such problems usually have some meaningful physical interpretations associated with them, so they give us good lessons.
So, my way of learning physics became a combination of various steps like this:
1. Choose some textbooks that are intended for different majors and for different depths of understanding (e.g. if I were to learn about thermodynamics I pick up 'fundamentals of physics', engineering thermodynamics, thermal and statistical physics, physical chemistry books)
2. Try out various problems in a physics major book (in the above case thermal and statistical mechanics), of course with a solutions manual
3. In order to familiarise myself with putting actual numbers and doing calculations precisely and quickly, do some problems in an engineering physics book
Is there anybody else studying like me, or is everybody studying like me, or is nobody studying like me? :)