- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $F$ be an integral domain with characteristic $2$. Let $a\in F[t]$ and $a \notin F$. Let $\alpha (a)$ be a root of the equation $x^2+ax+1=0$. We define the two sequences $X_m(a), Y_m(a) \in F[t], m \in \mathbb{Z}$ as followed:
$$X_m(a)+\alpha (a)Y_m(a)=(\alpha (a))^m=(a+\alpha (a))^{-m}$$
Lemma.
Let $F$ be an integral domain with characteristic $p=2$. Let $a \in F[t], a \notin F$. $X_m(s)$ (resp. $Y_m(a)$) is equal to the polynomial that we obtain if we substitute $t$ with $a$ at $X_m(t)$ (resp. $Y_m(t)$).
For the first two sentences about the degree I used induction on $m$. Is this correct?
As for the last two relations:
$$X_{-m}+\alpha (a)Y_{-m}=(a+\alpha (a))^m=((a+\alpha (a))^{-m})^{-1}=(X_m(a)+\alpha (a)Y_m(a))^{-1}=\frac{1}{X_m(a)+\alpha (a)Y_m(a)}$$
How could we continue?
Let $F$ be an integral domain with characteristic $2$. Let $a\in F[t]$ and $a \notin F$. Let $\alpha (a)$ be a root of the equation $x^2+ax+1=0$. We define the two sequences $X_m(a), Y_m(a) \in F[t], m \in \mathbb{Z}$ as followed:
$$X_m(a)+\alpha (a)Y_m(a)=(\alpha (a))^m=(a+\alpha (a))^{-m}$$
Lemma.
Let $F$ be an integral domain with characteristic $p=2$. Let $a \in F[t], a \notin F$. $X_m(s)$ (resp. $Y_m(a)$) is equal to the polynomial that we obtain if we substitute $t$ with $a$ at $X_m(t)$ (resp. $Y_m(t)$).
- The degree of the polynomial $X_m(t)$ is $m-2$, if $m \geq 2$.
- The degree of the polynomial $Y_m(t)$ is $m-1$, if $m \geq 2$.
- $X_{-m}=X_m(a)+aY_m(a)$
- $Y_{-m}(a)=Y_m(a)$
For the first two sentences about the degree I used induction on $m$. Is this correct?
As for the last two relations:
$$X_{-m}+\alpha (a)Y_{-m}=(a+\alpha (a))^m=((a+\alpha (a))^{-m})^{-1}=(X_m(a)+\alpha (a)Y_m(a))^{-1}=\frac{1}{X_m(a)+\alpha (a)Y_m(a)}$$
How could we continue?