MHB Tom's question at Yahoo Answers regarding solving for a limit of integration

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Integration Limit
AI Thread Summary
To solve the integral from 0 to x of the function 5000(1 - 100/(t + 10)^2) dt, the integral can be expressed as I. By applying the Fundamental Theorem of Calculus, the equation simplifies to a quadratic form, leading to the expression 5000x^2 - Ix - 10I = 0. The quadratic formula can then be used to find x, with the requirement that I equals 25000 for x to equal 10, while also yielding a second solution of x = -5. The discussion encourages further calculus questions to enhance understanding.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Mathematics news on Phys.org
Hello Tom,

Since I don't know the value the definite integral is to have, I will use $I$:

$$5000\int_0^x 1-\frac{100}{(t+10)^2}\,dt=I$$

First, let's divide through by 5000:

$$\int_0^x 1-\frac{100}{(t+10)^2}\,dt=\frac{I}{5000}$$

Next, let's use the anti-derivative form of the FTOC on the left side:

$$\left[t+\frac{100}{t+10} \right]_0^x=\frac{I}{5000}$$

$$\left(x+\frac{100}{x+10} \right)-\left(0+\frac{100}{0+10} \right)=\frac{I}{5000}$$

$$x+\frac{100}{x+10}-10-\frac{I}{5000}=0$$

Now, multiply through by $x+10$:

$$x(x+10)+100-\left(10+\frac{I}{5000} \right)(x+10)=0$$

Arrange in standard quadratic form:

$$x^2+10x+100-10x-100-\frac{I}{5000}x-\frac{I}{500}=0$$

$$5000x^2-Ix-10I=0$$

Applying the quadratic formula, we find:

$$x=\frac{I\pm\sqrt{I^2+200000I}}{10000}$$

Now, you just need to substitute the value of $I$ to find the two possible values of $x$, taking care not to cross the singularity in the original integrand.

In order for $x=10$, we find that we require $$I=25000$$, however, this also allows $x=-5$.

To Tom and any other guests viewing this topic, I invite and encourage you to post other calculus questions here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top