- #1
jdstokes
- 523
- 1
Hi all,
Would anyone be able to comment if my proof is sound or can be simplified.
Let (X,d) be a metric space, A a subset of X. The derived set A' of A is the set of all limit points of sequences in A.
Proposition: A' is closed.
Proof: Show that its
complement is open. Let [itex]x\in X\backslash A'[/itex] Then [itex]x\not\in \overline{A}[/itex] so there is a
non-zero [itex]\varepsilon_x[/itex] s.t. [itex]B(x,\varepsilon_x) \cap A = \emptyset
\Rightarrow B(x,\varepsilon_x) \subseteq X \backslash A[/itex]. Suppose
[itex]\exists y \in B(x,\varepsilon_x)[/itex] which in addition belongs to
A'. Then there's an open ball [itex]B(y,\varepsilon_y) \subseteq
B(x,\varepsilon_x)[/itex] about y which intersects A. Then
[itex]B(x,\varepsilon_x) \cap A \neq \emptyset[/itex]. This contradiction shows
that [itex]B(x,\varepsilon_x) \subseteq X\backslash A'[/itex]
Would anyone be able to comment if my proof is sound or can be simplified.
Let (X,d) be a metric space, A a subset of X. The derived set A' of A is the set of all limit points of sequences in A.
Proposition: A' is closed.
Proof: Show that its
complement is open. Let [itex]x\in X\backslash A'[/itex] Then [itex]x\not\in \overline{A}[/itex] so there is a
non-zero [itex]\varepsilon_x[/itex] s.t. [itex]B(x,\varepsilon_x) \cap A = \emptyset
\Rightarrow B(x,\varepsilon_x) \subseteq X \backslash A[/itex]. Suppose
[itex]\exists y \in B(x,\varepsilon_x)[/itex] which in addition belongs to
A'. Then there's an open ball [itex]B(y,\varepsilon_y) \subseteq
B(x,\varepsilon_x)[/itex] about y which intersects A. Then
[itex]B(x,\varepsilon_x) \cap A \neq \emptyset[/itex]. This contradiction shows
that [itex]B(x,\varepsilon_x) \subseteq X\backslash A'[/itex]