- #1
Figaro
- 103
- 7
Homework Statement
If ##\bf{A}## ##= \{A_i\}## and ##\bf{B}## ##= \{B_j\}## are two classes of sets such that ##\bf{A} \subseteq \bf{B}##, show that ##\cap_j B_j \subseteq \cap_i A_i## and ##\cup_i A_i \subseteq \cup_j B_j##
Homework Equations
The Attempt at a Solution
Since ##\bf{A} \subseteq \bf{B}##, for every ##A_i## such that for all ##x\in A_i## there exist a ##B_j## such that ##x\in B_j##
For ##\cap_j B_j \subseteq \cap_i A_i##,
For every ##x\in \cap_j B_j## and since all ##x## is also in ##A_i##, then ##x\in \cap_i A_i##. Thus ##\cap_j B_j \subseteq \cap_i A_i##
For ##\cup_i A_i \subseteq \cup_j B_j##,
Since ##\bf{A}## ##= \cup_i A_i##, ##\bf{B}## ##= \cup_j B_j##, and from ##\bf{A} \subseteq \bf{B}##. Thus, ##\cup_i A_i \subseteq \cup_j B_j##
Can anyone comment on this proof? I'm not sure about this.