- #1
- 8,888
- 649
- TL;DR Summary
- A torque is applied to a spinning gyro, and a second torque is applied to prevent precession. How to quantify the second torque?
A torque is applied to a spinning gyro, and a second torque is applied to prevent precession. How to quantify the second torque?
Example, a gyro spinning about the z axis is connected to a frame that can only rotate about the x axis. A torque about the x-axis is applied to the frame. What is the torque about the y-axis exerted onto the frame by the gyro and its Newton third law counterpart, the torque the frame exerts onto the gyro about the y axis, that prevents the gyro from precessing? The rate of change in angular momentum about the x-axis would be due to the combined external torques.
Example, a gyro spinning about the z axis is connected to a frame that can only rotate about the x axis. A torque about the x-axis is applied to the frame. What is the torque about the y-axis exerted onto the frame by the gyro and its Newton third law counterpart, the torque the frame exerts onto the gyro about the y axis, that prevents the gyro from precessing? The rate of change in angular momentum about the x-axis would be due to the combined external torques.