- #1
Samama Fahim
- 52
- 4
- Homework Statement
- Prove that $$P^i=\int d^3x T^{0i} = -\int d^3 \pi \partial_i \phi$$
- Relevant Equations
- $$T_{\nu}^{\mu}=\frac{\partial\mathcal{L}}{\partial(\partial_{\mu} \phi)}\partial_{\nu}\phi-\delta_{\nu}^{\mu}\mathcal{L}$$
As
$$\hat{P_i} = \int d^3x T^0_i,$$
and
$$T_i^0=\frac{\partial\mathcal{L}}{\partial(\partial_0 \phi)}\partial_i\phi-\delta_i^0\mathcal{L}=\frac{\partial\mathcal{L}}{\partial(\partial_0 \phi)}\partial_i\phi=\pi\partial_i\phi.$$
Therefore,
$$\hat{P_i} = \int d^3x \pi\partial_i\phi.$$
However, in Peskin & Schroeder it's given with a negative sign:
$$\hat{P^i} = -\int d^3x \pi\partial_i\phi.$$
How do I go from $$T^{0}_i$$ to $$T^{0i}$$?
$$\hat{P_i} = \int d^3x T^0_i,$$
and
$$T_i^0=\frac{\partial\mathcal{L}}{\partial(\partial_0 \phi)}\partial_i\phi-\delta_i^0\mathcal{L}=\frac{\partial\mathcal{L}}{\partial(\partial_0 \phi)}\partial_i\phi=\pi\partial_i\phi.$$
Therefore,
$$\hat{P_i} = \int d^3x \pi\partial_i\phi.$$
However, in Peskin & Schroeder it's given with a negative sign:
$$\hat{P^i} = -\int d^3x \pi\partial_i\phi.$$
How do I go from $$T^{0}_i$$ to $$T^{0i}$$?