- #1
juantheron
- 247
- 1
Calculation of Total no. of positive integer ordered pairs $(n,r)$ in $\displaystyle \binom{n}{r} = 120$
My Try:: Clearly $\displaystyle \binom{n}{r} = 120 \Rightarrow \binom{120}{1} = \binom{120}{119} = 120$
So $(n,r) = (120,1)\;\;,(120,119)$ are positive integer ordered pairs which satisfy the given equation.
Now we will calculate for other positive integer ordered pairs whether it is exists or not.
So $\displaystyle \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!} = 2^3 \times 3 \times 5\Rightarrow \frac{n!}{r! .\cdot (n-r)! \cdot 5} = 2^3 \cdot 3$
So Largest prime factors of $120$ is $5$. So $\displaystyle n\geq 5$
Now for $r$. Here $ 1 \leq r < 119$ and $r \leq \frac{n}{2}$
So my Question is How can I calculate other positive ordered pairs.
So please help me
Thanks
My Try:: Clearly $\displaystyle \binom{n}{r} = 120 \Rightarrow \binom{120}{1} = \binom{120}{119} = 120$
So $(n,r) = (120,1)\;\;,(120,119)$ are positive integer ordered pairs which satisfy the given equation.
Now we will calculate for other positive integer ordered pairs whether it is exists or not.
So $\displaystyle \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!} = 2^3 \times 3 \times 5\Rightarrow \frac{n!}{r! .\cdot (n-r)! \cdot 5} = 2^3 \cdot 3$
So Largest prime factors of $120$ is $5$. So $\displaystyle n\geq 5$
Now for $r$. Here $ 1 \leq r < 119$ and $r \leq \frac{n}{2}$
So my Question is How can I calculate other positive ordered pairs.
So please help me
Thanks