- #1
juantheron
- 247
- 1
(A) Total no. of integer ordered pairs $(x,y)$ in $x^2-y! = 2001$
(B) Total no. of integer ordered pairs $(x,y)$ in $x^2-y! = 2013$
My Trail :: (A) Given $x^2-y! = 2001 = 3 \times 23 \times 29 \Rightarrow x^2 -y! = \left(3\times 23 \times 29\right)$
means $(x^2-y!)$ must be divisible by $3$ So $x = 3k$ anf $y\geq 3$, where $k\in \mathbb{Z}$
So $9k^2-y! = 3\times 23 \times 29$
Now How can i solve after that
Thanks
(B) Total no. of integer ordered pairs $(x,y)$ in $x^2-y! = 2013$
My Trail :: (A) Given $x^2-y! = 2001 = 3 \times 23 \times 29 \Rightarrow x^2 -y! = \left(3\times 23 \times 29\right)$
means $(x^2-y!)$ must be divisible by $3$ So $x = 3k$ anf $y\geq 3$, where $k\in \mathbb{Z}$
So $9k^2-y! = 3\times 23 \times 29$
Now How can i solve after that
Thanks