- #1
jahlex
- 5
- 0
Homework Statement
Let [itex]G[/itex] be a finite complex matrix group: [itex]G \subset M_{n\times n}[/itex]. Show that, for [itex]g \in G, |\text{tr}(g)| \le n[/itex] and [itex]|\text{tr}(g)| = n[/itex] only for [itex]g = e^{i\theta}I[/itex].
2. The attempt at a solution
Since [itex]G[/itex] is finite, then every element [itex]g \in G[/itex] has a finite order: [itex]g^r = I[/itex] for some whole number [itex]r[/itex]. By the formula for traces, [itex]\text{tr}(g) = \displaystyle\sum_{i=1}^n \lambda_i[/itex] and [itex]\text{tr}(g^r) = \displaystyle\sum_{i=1}^n \lambda_i^r = n[/itex] where [itex]\lambda_i[/itex] are eigenvalues of [itex]g[/itex]. So how do I show that [itex]|\displaystyle\sum_{i=1}^n \lambda_i| \le \displaystyle\sum_{i=1}^n \lambda_i^r[/itex] for complex [itex]\lambda_i[/itex] ?
The problem comes from Exercise A2.11 on page 612 of Nielsen and Chuang's Quantum Computation and Quantum Information 10th Anniversary Edition. The textbook can easily be found, for example, here www.johnboccio.com/research/quantum/notes/QC10th.pdf
Last edited by a moderator: