- #1
VSayantan
- 59
- 4
Homework Statement
Find the trace of a ##4\times 4## matrix ##\mathbb U=exp(\mathbb A)##, where
$$\mathbb A = \begin {pmatrix} 0&0&0&{\frac {\pi}{4}}\\ 0&0&{\frac {\pi}{4}}&0\\ 0&{\frac {\pi}{4}}&0&0\\ {\frac {\pi}{4}}&0&0&0 \end {pmatrix}$$
Homework Equations
$$e^{(\mathbb A)}=\mathbb P {e^{\mathbb D}} {\mathbb P}^{-1}$$
The Attempt at a Solution
Eigenvalues of ##\mathbb (A)## are ##{\lambda}_1=-\frac {\pi}{4}##, ##{\lambda}_2=-\frac {\pi}{4}##, ##{\lambda}_3=\frac {\pi}{4}## and ##{\lambda}_4=\frac {\pi}{4}##.
The corresponding eigenvectors are
$${\vec v}_1=\begin {pmatrix} 0\\ -1\\1\\0 \end {pmatrix}$$
$${\vec v}_2=\begin {pmatrix} -1\\ 0\\0\\1 \end {pmatrix}$$
$${\vec v}_3=\begin {pmatrix} 0\\ 1\\1\\0 \end {pmatrix}$$
$${\vec v}_4=\begin {pmatrix} 1\\ 0\\0\\1 \end {pmatrix}$$
So, $$\mathbb P = \begin {pmatrix} 0&-1&0&1\\ -1&0&1&0\\ 1&0&1&0\\ 0&1&0&1 \end {pmatrix}$$
$$Co{\mathbb P} = \begin {pmatrix} 0&2&0&-2\\ 2&0&-2&0\\ -2&0&-2&0\\ 0&-2&0&-2 \end {pmatrix}$$
$${(Co{\mathbb P})}^T = \begin {pmatrix} 0&2&-2&0\\ 2&0&0&-2\\ 0&-2&-2&0\\ -2&0&0&-2 \end {pmatrix}$$
$$det{\mathbb P} = \begin {vmatrix} 0&-1&0&1\\ -1&0&1&0\\ 1&0&1&0\\ 0&1&0&1 \end {vmatrix}$$
Which gives
$$det{\mathbb P} = -4$$
Now, $${\mathbb P}^{-1} = \frac {{(Co{\mathbb P})}^T}{det{\mathbb P}}$$
So, $${\mathbb P}^{-1} = {\frac {1}{- 4}}{\begin {pmatrix} 0&2&-2&0\\ 2&0&0&-2\\ 0&-2&-2&0\\ -2&0&0&-2 \end {pmatrix}}$$
After simplification
$${\mathbb P}^{-1} = \begin {pmatrix} 0&{-\frac {1}{2}}&{\frac {1}{2}}&0\\ {-\frac {1}{2}}&0&0&{\frac {1}{2}}\\ 0&{\frac {1}{2}}&{\frac {1}{2}}&0\\ {\frac {1}{2}}&0&0&{\frac {1}{2}} \end {pmatrix}$$
Then $${{\mathbb P}^{-1}}{\mathbb A}{\mathbb P} = {\begin {pmatrix} 0&{-\frac {1}{2}}&{\frac {1}{2}}&0\\ {-\frac {1}{2}}&0&0&{\frac {1}{2}}\\ 0&{\frac {1}{2}}&{\frac {1}{2}}&0\\ {\frac {1}{2}}&0&0&{\frac {1}{2}}\end {pmatrix}} {\begin {pmatrix} 0&0&0&{\frac {\pi}{4}}\\ 0&0&{\frac {\pi}{4}}&0\\ 0&{\frac {\pi}{4}}&0&0\\ {\frac {\pi}{4}}&0&0&0 \end {pmatrix}}{\begin {pmatrix} 0&-1&0&1\\ -1&0&1&0\\ 1&0&1&0\\ 0&1&0&1\end {pmatrix}}$$
This simplifies, giving the diagonal matrix $${{\mathbb P}^{-1}}{\mathbb A}{\mathbb P} =\begin {pmatrix} -{\frac {\pi}{4}}&0&0&0\\ 0&-{\frac {\pi}{4}}&0&0\\ 0&0&{\frac {\pi}{4}}&0\\ 0&0&0&{\frac {\pi}{4}} \end {pmatrix}$$
Now, I don't know if $$e^{{{\mathbb P}^{-1}}{\mathbb A}{\mathbb P}} =\begin {pmatrix} e^{-{\frac {\pi}{4}}}&0&0&0\\ 0&e^{-{\frac {\pi}{4}}}&0&0\\ 0&0&e^{{\frac {\pi}{4}}}&0\\ 0&0&0&e^{{\frac {\pi}{4}}} \end {pmatrix}$$
If it is so, ##trace {[\mathbb P {e^{\mathbb D}} {\mathbb P}^{-1}]}## looks not ok.
Can anyone suggest any simpler way to handle such a problem?
Last edited: