- #1
GreenPrint
- 1,196
- 0
Homework Statement
[PLAIN]http://imagizer.imageshack.us/v2/800x600q90/690/0tab.png
I'm asked to find the transfer function and then find the state space representation and seem to be stuck.
Homework Equations
The Attempt at a Solution
My textbook states that for a noninverting operational amplifier shown below
http://imagizer.imageshack.us/v2/800x600q90/10/zmir.png
[itex]\frac{V_{o}(s)}{V_{i}(s)} = \frac{A}{1 + frac{AZ_{1}(s)}{Z_{1}(s) + Z_{2}(s)}}[/itex]
and for large A
[itex]\frac{V_{o}(s)}{V_{i}(s)} = \frac{Z_{1}(s) + Z_{2}(s)}{Z_{1}(s)}[/itex]
For my circuit
[PLAIN]http://imagizer.imageshack.us/v2/800x600q90/690/0tab.png
I'll make the follow substitutions
[itex]R_{4} = 110 KΩ[/itex]
[itex]C_{2} = 4 μF[/itex]
[itex]R_{3} = 600 KΩ[/itex]
[itex]R_{2} = 400 KΩ[/itex]
[itex]C_{1} = 4 μF[/itex]
[itex]R_{1} = 600 KΩ[/itex]
Now then
[itex]Z_{1}(s) = R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1}[/itex]
[itex]Z_{2}(s) = R_{3} + (C_{2}s + \frac{1}{R_{4}})^{-1}[/itex]
Hence for my circuit the transfer function is
[itex]\frac{V_{o}(s)}{V_{i}(s)} = \frac{Z_{1}(s) + Z_{2}(s)}{Z_{1}(s)} = \frac{R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1} + R_{3} + (C_{2}s + \frac{1}{R_{4}})^{-1}}{R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1}}[/itex]
I can rearrange and get
[itex]V_{o}(s)(R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1}) = V_{i}(s)(R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1} + R_{3} + (C_{2}s + \frac{1}{R_{4}})^{-1})[/itex]
[itex]R_{2}V_{o}(s) + \frac{R_{1}}{C_{1}R_{1}s + 1}V_{o}(s) = R_{2}V_{i}(s) + \frac{R_{1}}{C_{1}R_{1}s + 1}V_{i}(s) + R_{3}V_{i}(s) + \frac{R_{4}}{C_{2}R_{1}s + 1}V_{i}(s)[/itex]
[itex]L^{-1}(R_{2}V_{o}(s)) + \frac{\frac{1}{C_{1}}}{s + \frac{1}{C_{1}R_{1}}}V_{o}(s) = L^{-1}(R_{2}V_{i}(s) + R_{3}V_{i}(s)) + \frac{\frac{1}{C_{1}}}{s + \frac{1}{C_{1}R_{1}}}V_{i}(s) + \frac{\frac{1}{C_{2}}}{s + \frac{1}{C_{2}R_{4}}}V_{i}(s)[/itex]
[itex]R_{2}V_{o}(t) + \frac{1}{C_{1}}L^{-1}(\frac{V_{o}(s)}{s + \frac{1}{C_{1}R_{1}}}) = (R_{2} + R_{3})V_{i}(t) + \frac{1}{C_{1}}L^{-1}(\frac{V_{i}(s)}{s + \frac{1}{C_{1}R_{1}}}) + \frac{1}{C_{2}}L^{-1}(\frac{V_{i}(s)}{s + \frac{1}{C_{2}R_{4}}})[/itex]
I'm not sure how to evaluate this further
Last edited by a moderator: