- #1
ergospherical
- 1,055
- 1,347
I can't figure out how to transform the coordinates to get to the given metric \begin{align*}ds^2 = \cos x (dy^2 - dx^2) + 2\sin x dx dy \end{align*} for a 2-torus. Initially I parameterised it by two angles ##\theta## (around the ##z## axis) and ##\phi## (around the torus axis), to write ##\mathbf{r} = ((R + r\cos \phi) \cos \theta, (R + r\cos \phi) \sin \theta, r\sin \phi)## in cartesians, then
\begin{align*}
d\mathbf{r} &= \begin{pmatrix} -(R + r\cos \phi) \sin \theta d\theta - r\sin \phi \cos \theta d\phi \\
(R + r\cos \phi) \cos \theta d\theta - r\sin \phi \sin \theta d\phi \\
r \cos \phi d\phi
\end{pmatrix} \\ \\
ds^2 &= (R + r\cos \phi)^2 d\theta^2 + r^2 d\phi^2
\end{align*}a little hint would be appreciated?
\begin{align*}
d\mathbf{r} &= \begin{pmatrix} -(R + r\cos \phi) \sin \theta d\theta - r\sin \phi \cos \theta d\phi \\
(R + r\cos \phi) \cos \theta d\theta - r\sin \phi \sin \theta d\phi \\
r \cos \phi d\phi
\end{pmatrix} \\ \\
ds^2 &= (R + r\cos \phi)^2 d\theta^2 + r^2 d\phi^2
\end{align*}a little hint would be appreciated?