- #1
Otacon23
- 3
- 0
Homework Statement
I'm trying to get to grips with Godel's 1949 Paper on Closed Time-like Curves (CTCs). Currently I'm trying to confirm his transformation to cylindrical coordinates using maple but seem to keep getting the wrong answer.
Homework Equations
The line element in cartesian coordinates is: ##dS^2 = a^2[dx_0^2-dx_1^2+\frac{1}{2}##e##2x_1####dx_2^2-dx_3^2+2##e##x_1####dx_0dx_2]## using the following substitutions:
##e####x_1#### = \cosh(2r) + \cos(\phi)\sinh(2r)##
##x_2e####x_1####= \sqrt{2}\sin(\phi)sinh(2r)##
##\tan(\frac{\phi}{2} + \frac{x_0 - 2t}{2\sqrt{2}}) = e####2r####\tan(\frac{\phi}{2})##
##x_3 = 2y##
I need to show that the line element is ##dS^2 = 4a^2[dt^2 -dr^2 -dy^2 + (\sinh^4(r) - \sinh^2(r))d\phi^2 + 2\sqrt{2}\sinh^2(r)d\phi dt]##
The Attempt at a Solution
I started by differentiating these four equations to obtain expressions for ##dx_0, dx_1, dx_2, dx_3##
## dx_0 = 2e####-2r####\sqrt{2}cos^2(\frac{\phi}{2} + \frac{x_0 - 2t}{2\sqrt{2}})(\frac{1}{2}\sec^2(\frac{\phi}{2})d\phi - 2\tan(\frac{\phi}{2})dr) + 2dt - \sqrt{2}d\phi##
##dx_1 =2e####-x_1####(sinh(2r) + cos(\phi)cosh(2r))dr - e####-x_1####sin(\phi)sinh(2r)d\phi##
##dx_2 = e####-x_1####sinh(2r)(\sqrt{2}cos(\phi) +x_2\sin(\phi))d\phi + 2e####-x_1####(\sqrt{2}sin(\phi)\cosh(2r)-x_2\sinh(2r)-cos(\phi)\cosh(2r))dr##
##dx_3 = 2dy##
In maple I then defined the variable 'X' to be
##X := a^2[dx_0^2-dx_1^2+\frac{1}{2}##e##2x_1####dx_2^2-dx_3^2+2##e##x_1####dx_0dx_2] - 4a^2[dt^2 -dr^2 -dy^2 + (\sinh^4(r) - \sinh^2(r))d\phi^2 + 2\sqrt{2}\sinh^2(r)d\phi dt];##
Then defined 'XX' to be
##XX:=(subs(dx_0 = ..., dx_1 = ..., dx_2 = ..., dx_3 = ..., X));##
Then simplified the result hoping it to be zero.
##simplify(XX);##
Instead of zero I receive 4 pages or so of trash, so basically can anyone point out where or how I have gone askew?
Many thanks!