- #1
synoe
- 23
- 0
For the non-linear sigma action,
[tex]
S_G=\frac{1}{4\pi\alpha^\prime}\int d^2\sigma\sqrt{-\gamma(\sigma)}\gamma^{\mu\nu}(\sigma)G_{ij}(X)\partial_\mu(\sigma) X^i\partial_\nu X^j(\sigma),
[/tex]
Let us consider an infinitesimal target space transformation [itex]X^\mu\to X^{\prime\mu}(X)=X+\epsilon\xi^\mu(X)[/itex]. The variation of the action under this transformation corresponds to the Lie derivative of the target space metric?:
[tex]
\delta_\xi S_G=\frac{\epsilon}{4\pi\alpha^\prime}\int d^2\sigma\sqrt{-\gamma}\gamma^{\mu\nu}\left(\mathcal{L}_\xi G_{ij}\right)\partial_\mu X^i\partial_\nu X^j
[/tex]
Indeed, it seems to be true by a straightforward calculation :
[tex]
\delta_\xi S_G=S_G[X+\epsilon\xi]-S_G[X].
[/tex]
But I don't know how to understand this is same to the Lie derivative.
And how about the NS-NS 2-form term?
[tex]
S_B=\frac{1}{4\pi\alpha^\prime}\int d^2\sigma\varepsilon^{\mu\nu}B_{ij}\partial_\mu X^i\partial_j X^j=\frac{1}{4\pi\alpha^\prime}\int B_{ij}dX^i\wedge dX^j
[/tex]
The variation of this term may be [itex]\delta_\xi S_B=\frac{1}{4\pi\alpha^\prime}\int\left(\mathcal{L}_\xi B_{ij}\right)dX^i\wedge dX^j[/itex]. But I couldn't verify by the straightforward calculation.
Please teach me the validity that the transformation of the action corresponds to the Lie derivative for the background field [itex]G, B[/itex].
[tex]
S_G=\frac{1}{4\pi\alpha^\prime}\int d^2\sigma\sqrt{-\gamma(\sigma)}\gamma^{\mu\nu}(\sigma)G_{ij}(X)\partial_\mu(\sigma) X^i\partial_\nu X^j(\sigma),
[/tex]
Let us consider an infinitesimal target space transformation [itex]X^\mu\to X^{\prime\mu}(X)=X+\epsilon\xi^\mu(X)[/itex]. The variation of the action under this transformation corresponds to the Lie derivative of the target space metric?:
[tex]
\delta_\xi S_G=\frac{\epsilon}{4\pi\alpha^\prime}\int d^2\sigma\sqrt{-\gamma}\gamma^{\mu\nu}\left(\mathcal{L}_\xi G_{ij}\right)\partial_\mu X^i\partial_\nu X^j
[/tex]
Indeed, it seems to be true by a straightforward calculation :
[tex]
\delta_\xi S_G=S_G[X+\epsilon\xi]-S_G[X].
[/tex]
But I don't know how to understand this is same to the Lie derivative.
And how about the NS-NS 2-form term?
[tex]
S_B=\frac{1}{4\pi\alpha^\prime}\int d^2\sigma\varepsilon^{\mu\nu}B_{ij}\partial_\mu X^i\partial_j X^j=\frac{1}{4\pi\alpha^\prime}\int B_{ij}dX^i\wedge dX^j
[/tex]
The variation of this term may be [itex]\delta_\xi S_B=\frac{1}{4\pi\alpha^\prime}\int\left(\mathcal{L}_\xi B_{ij}\right)dX^i\wedge dX^j[/itex]. But I couldn't verify by the straightforward calculation.
Please teach me the validity that the transformation of the action corresponds to the Lie derivative for the background field [itex]G, B[/itex].