- #1
ElijahRockers
Gold Member
- 270
- 10
Homework Statement
Let ## x_j = \begin{Bmatrix}
{1, 0 \leq j \leq N-1} \\
{0, else} \\
\end{Bmatrix}
##
Show that ##\hat{x}(\phi) = \frac{e^{-i\frac{N-1}{2}\phi}sin(\frac{N}{2}\phi)}{sin(\frac{1}{2}\phi)}##
Homework Equations
[/B]
##\hat{x}(\phi) := \sum_{j = -\infty}^{\infty} x_j e^{-ij\phi}##
The Attempt at a Solution
So I get ##\hat{x}(z) = \sum_{j = 0}^{N-1} z^{-j} = \sum_{0}^{N-1} (\frac{1}{z})^{j}##
I believe this is a geometric series, with sum ##\hat{x}(z) = \frac{1-z^{-N}}{1-z^{-1}} = \frac{1-e^{-iN\phi}}{1-e^{-i\phi}}##
Of course this makes the assumption that ##|\frac{1}{z}| < 1 ## which I am not entirely sure about. Any tips appreciated.