- #1
karush
Gold Member
MHB
- 3,269
- 5
mnt{7.3} nmh{2000}
$$\displaystyle
\int\frac{1}{{t}^{2}\sqrt{1+{t}^{2}}} \ dt = \frac{-\sqrt{t^2+1}}{t}+C$$
$\displaystyle t=\tan\left({u}\right)$
$\displaystyle dt=\sec^2(u) \ du $
$$\int\frac{\sec^2\left({u}\right)}
{\tan^2\left({u}\right)sec\left({u}\right)} \ du
\implies\int\frac{\sec\left({u}\right)}{\tan^2\left({u}\right)} \ du $$
Then ??
$$\displaystyle
\int\frac{1}{{t}^{2}\sqrt{1+{t}^{2}}} \ dt = \frac{-\sqrt{t^2+1}}{t}+C$$
$\displaystyle t=\tan\left({u}\right)$
$\displaystyle dt=\sec^2(u) \ du $
$$\int\frac{\sec^2\left({u}\right)}
{\tan^2\left({u}\right)sec\left({u}\right)} \ du
\implies\int\frac{\sec\left({u}\right)}{\tan^2\left({u}\right)} \ du $$
Then ??
Last edited: