- #1
ergospherical
- 1,062
- 1,348
Let's say I know the position space wavefunctions of the 1d harmonic oscillator ##\psi_n(x)## corresponding to the state ##| n \rangle## are known. I want to write ##\psi_m(x + a)##, for fixed ##m = 1,2,...##, in terms of all of the ##\psi_n(x)##. I know \begin{align*}
\psi_n(x+a) = \langle x | e^{-iaP}| n \rangle &= \int \langle x | e^{-iaP} | p \rangle \langle p | n \rangle dp \\
&= \int e^{-iap} \langle x | p \rangle \bar{\psi}_n(p) dp \\
&= \frac{1}{\sqrt{2\pi}} \int e^{i(x-a)p} \bar{\psi}_n(p) dp
\end{align*}To get it in terms of ##\psi_n(x)## we could Fourier transform, i.e. (?)
\begin{align*}
\psi_n(x+a) = \frac{1}{2\pi} \iint e^{ip(x-x')} e^{-iap} \psi_n(x') dx' dp
\end{align*}It doesn't really look helpful?
\psi_n(x+a) = \langle x | e^{-iaP}| n \rangle &= \int \langle x | e^{-iaP} | p \rangle \langle p | n \rangle dp \\
&= \int e^{-iap} \langle x | p \rangle \bar{\psi}_n(p) dp \\
&= \frac{1}{\sqrt{2\pi}} \int e^{i(x-a)p} \bar{\psi}_n(p) dp
\end{align*}To get it in terms of ##\psi_n(x)## we could Fourier transform, i.e. (?)
\begin{align*}
\psi_n(x+a) = \frac{1}{2\pi} \iint e^{ip(x-x')} e^{-iap} \psi_n(x') dx' dp
\end{align*}It doesn't really look helpful?