- #1
JonnyMaddox
- 74
- 1
Hi, I want to translate this equation
[itex]R_{\hat{n}}(\alpha)\vec{x}=\hat{n}(\hat{n}\cdot\vec{x})+\cos\left(\alpha\right)(\hat{n}\times\vec{x})\times\hat{n}+\sin\left(\alpha\right)(\hat{n}\times\vec{x})[/itex]
to index notation (forget about covariant and contravariant indices).
My attempt:
[itex]R_{ji}x_{i}=n_{j}n_{k}n_{k}-cos(\phi)\epsilon_{lmj} \epsilon_{noj} n_{l}x_{m}n_{j}+sin(\phi)\epsilon_{pqj} n_{p}x_{q}[/itex]
The minus sign comes from [itex]\hat{n} \times (\vec{x} \times \hat{n})= -(\hat{n} \times \vec{x}) \times \hat{n}[/itex]
So is this right??
[itex]R_{\hat{n}}(\alpha)\vec{x}=\hat{n}(\hat{n}\cdot\vec{x})+\cos\left(\alpha\right)(\hat{n}\times\vec{x})\times\hat{n}+\sin\left(\alpha\right)(\hat{n}\times\vec{x})[/itex]
to index notation (forget about covariant and contravariant indices).
My attempt:
[itex]R_{ji}x_{i}=n_{j}n_{k}n_{k}-cos(\phi)\epsilon_{lmj} \epsilon_{noj} n_{l}x_{m}n_{j}+sin(\phi)\epsilon_{pqj} n_{p}x_{q}[/itex]
The minus sign comes from [itex]\hat{n} \times (\vec{x} \times \hat{n})= -(\hat{n} \times \vec{x}) \times \hat{n}[/itex]
So is this right??