- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading Sheldon Axler's book: Measure, Integration & Real Analysis ... and I am focused on Chapter 2: Measures ...
I need help with the proof of Result 2.7 ...
Result 2.7 and its proof read as follows:
In the above proof by Axler we read the following:
" ... ... Thus
... $\mid t + A \mid \leq \sum_{ k = 1 }^{ \infty } l ( t + I_k ) = \sum_{ k = 1 }^{ \infty } l ( I_k )$
Taking the infimum of the last term over all sequences $I_1, I_2, ... $ of open intervals whose union contains $A$, we have $\mid t + A \mid \leq \mid A \mid$. ... ..."Can someone please explain exactly how/why taking the infimum of the last term over all sequences $I_1, I_2, ... $ of open intervals whose union contains $A$, we have $\mid t + A \mid \leq \mid A \mid$ ... ?... Peter
I need help with the proof of Result 2.7 ...
Result 2.7 and its proof read as follows:
" ... ... Thus
... $\mid t + A \mid \leq \sum_{ k = 1 }^{ \infty } l ( t + I_k ) = \sum_{ k = 1 }^{ \infty } l ( I_k )$
Taking the infimum of the last term over all sequences $I_1, I_2, ... $ of open intervals whose union contains $A$, we have $\mid t + A \mid \leq \mid A \mid$. ... ..."Can someone please explain exactly how/why taking the infimum of the last term over all sequences $I_1, I_2, ... $ of open intervals whose union contains $A$, we have $\mid t + A \mid \leq \mid A \mid$ ... ?... Peter