- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
In a triangle $ABC$, let $\angle A\ge \angle B \ge \angle C$ and suppose that $\sin 4A+\sin 4B+\sin 4C=2(\sin 2A+\sin 2B+\sin 2C)$. Find all possible values of $\cos A$.
-----
-----
In a triangle $ABC$, let $\angle A\ge \angle B \ge \angle C$ and suppose that $\sin 4A+\sin 4B+\sin 4C=2(\sin 2A+\sin 2B+\sin 2C)$. Find all possible values of $\cos A$.
-----