MHB Triangle Challenge: Prove $p^4+q^4+r^4-2p^2q^2-2q^2r^2-2r^2p^2<0$

AI Thread Summary
The discussion centers on proving the inequality $p^4+q^4+r^4-2p^2q^2-2q^2r^2-2r^2p^2<0$ for the sides of a triangle, denoted as $p$, $q$, and $r$. Participants highlight the need for a mathematical approach to demonstrate that the expression is negative under the triangle inequality conditions. The conversation includes admiration for a member's factoring skills, indicating a collaborative atmosphere focused on problem-solving. The goal remains clear: to establish the validity of the inequality specifically for triangle side lengths. Overall, the thread emphasizes mathematical proof and community engagement in tackling the challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $p^4+q^4+r^4-2p^2q^2-2q^2r^2-2r^2p^2<0$ for $p,\,q,\,r$ are the sides of a triangle.
 
Mathematics news on Phys.org
anemone said:
Prove that $p^4+q^4+r^4-2p^2q^2-2q^2r^2-2r^2p^2<0$ for $p,\,q,\,r$ are the sides of a triangle.

By the triangle inequality, $|p - q| < r < p + q$. Thus $(p - q)^2 < r^2 < (p + q)^2$; Using this, we find

$\displaystyle p^4 + q^4 + r^4 - 2p^2q^2 - 2q^2r^2 - 2r^2p^2$

$\displaystyle = (p^2 + q^2 - r^2)^2 - 4p^2q^2$

$\displaystyle = (p^2 + q^2 - r^2 - 2pq)(p^2 + q^2 - r^2 + 2pq)$

$\displaystyle = [(p - q)^2 - r^2][(p + q)^2 - r^2]$

$\displaystyle < 0$.
 
Last edited:
Euge said:
By the triangle inequality, $|p - q| < r < p + q$. Thus $(p - q)^2 < r^2 < (p + q)^2$; Using this, we find

$\displaystyle p^4 + q^4 + r^4 - 2p^2q^2 - 2q^2r^2 - 2r^2p^2$

$\displaystyle = (p^2 + q^2 - r^2)^2 - 4p^2q^2$

$\displaystyle = (p^2 + q^2 - r^2 - 2pq)(p^2 + q^2 - r^2 + 2pq)$

$\displaystyle = [(p - q)^2 - r^2][(p + q)^2 - r^2]$

$\displaystyle < 0$.

Hey Euge, you're so tremendously great at factoring to simplify any given math expressions and I admire all those heuristic skills that you posses! So I tip my hat to you!:cool:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top