- #1
Dustinsfl
- 2,281
- 5
Prove the identities
$$
\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}
$$
By using the identity $\sin\alpha + beta$, I was able to obtain the $1/2$ but now I am not to sure with what to do.
$$
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}
$$
Any suggestions?
$$
\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}}
$$
By using the identity $\sin\alpha + beta$, I was able to obtain the $1/2$ but now I am not to sure with what to do.
$$
\frac{(\sin\frac{n\theta}{2}\cos\frac{\theta}{2}+\sin\frac{\theta}{2}\cos\frac{n\theta}{2})\cos\frac{n\theta}{2}}{\sin\frac{\theta}{2}} = \frac{1}{2} + \frac{1}{2}\cos n\theta + \frac{\sin\frac{n\theta}{2}\cos\frac{n\theta}{2} \cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}
$$
Any suggestions?