- #1
Cosmic-Kat
- 8
- 0
I have re-post this forum as I should have paid closer attention to rules. I apologized for that.
1) The expression tan^3 θ + sinθ/cosθ is equal to:
(a) cot θ (b) tan θ sec^2 θ (c) tan θ (d) sin θ tan θ (e) tan θ csc^2 θ 2) Simplify (cos θ/1+ sin θ - cosθ/sinθ-1)^-1
(a) cos θ/2 (b) 2sec θ (c) 2sin θ (d) csc θ/2 3) The expression cot θ/csc θ-sin θ is equal to:
(a) cos θ (b) sec θ (c) tan θ (d) sin θ (e) csc
Identifying the trigonometry identities
Tan=sin/cos
Sec=1/cos
Cot= cos/sin
Csc= 1/Sin
Tan^3 = Sin^3/Cos^3;
Sin^3/Cos^3 + Sin/Cos=
Sin^4/Cos^4 = Tan
(c) Tan
The second question (I'm very lost on this) :
(2Cos/(1+Sin)(Sin-1))^-1=
(2Cos(Sin-1)/(1+Sin))^-1=
(-2Cos/1)^-1=
1/2cos= 2sec
(?)
(b) 2Sec
The third question:
(Cos/Sin)/ (1/Sin) -(Sin/1) =
(Cos/Sin)(Sin/1)/ (1/Sin)=
(Cos*Sin/Sin)/(1/Sin)=
Cos/(1/Sin) =
Sin/Cos = Tan
(c) Tan
Homework Statement
1) The expression tan^3 θ + sinθ/cosθ is equal to:
(a) cot θ (b) tan θ sec^2 θ (c) tan θ (d) sin θ tan θ (e) tan θ csc^2 θ 2) Simplify (cos θ/1+ sin θ - cosθ/sinθ-1)^-1
(a) cos θ/2 (b) 2sec θ (c) 2sin θ (d) csc θ/2 3) The expression cot θ/csc θ-sin θ is equal to:
(a) cos θ (b) sec θ (c) tan θ (d) sin θ (e) csc
Homework Equations
:[/B]Identifying the trigonometry identities
Tan=sin/cos
Sec=1/cos
Cot= cos/sin
Csc= 1/Sin
The Attempt at a Solution
:[/B]Here's my attempt on the first question:Tan^3 = Sin^3/Cos^3;
Sin^3/Cos^3 + Sin/Cos=
Sin^4/Cos^4 = Tan
(c) Tan
The second question (I'm very lost on this) :
(2Cos/(1+Sin)(Sin-1))^-1=
(2Cos(Sin-1)/(1+Sin))^-1=
(-2Cos/1)^-1=
1/2cos= 2sec
(?)
(b) 2Sec
The third question:
(Cos/Sin)/ (1/Sin) -(Sin/1) =
(Cos/Sin)(Sin/1)/ (1/Sin)=
(Cos*Sin/Sin)/(1/Sin)=
Cos/(1/Sin) =
Sin/Cos = Tan
(c) Tan
Last edited by a moderator: