Trig identity in complex multiplication

In summary, The conversation discusses the simplification of two complex numbers using trigonometric identities. The third line is achieved by using the identities sin(a+b) = sin(a)cos(b) + cos(a)sin(b) and cos(a+b) = cos(a)cos(b) - sin(a)sin(b). The speaker expresses surprise at not being taught these basic identities in their math course and the other speaker suggests that their school may not have a dedicated trigonometry course.
  • #1
Shaybay92
124
0
Just wondering how this is simplified to the third line:

If w, z are complex numbers

wz = rs( cos[tex]\alpha[/tex] + isin [tex]\alpha[/tex] ) (cos [tex]\varphi[/tex] + isin [tex]\varphi[/tex])

wz = rs(cos[tex]\alpha[/tex] cos [tex]\varphi[/tex] - sin [tex]\alpha[/tex]sin[tex]\varphi[/tex]) + i(sin [tex]\alpha[/tex]cos[tex]\varphi[/tex] + cos [tex]\alpha[/tex] sin [tex]\varphi[/tex]))

wz = rs(cos ([tex]\alpha[/tex] +[tex]\varphi[/tex]) + i sin([tex]\alpha[/tex] +[tex]\varphi[/tex]))

What sort of trigonometric identity is used here between the 2nd and 3rd lines?
 
Mathematics news on Phys.org
  • #2
Exactly those as written:

sin(a+b) = sin(a)cos(b) + cos(a)sin(b)
cos(a+b) = cos(a)cos(b) - sin(a)sin(b)
 
  • #3
Thanks I hadn't seen these identities before
 
  • #4
Shaybay92 said:
Thanks I hadn't seen these identities before

These are basic identities, which are taught in the first course of trigonometry.
 
  • #5
You would think so but apparently my school doesn't see the importance in teaching this stuff. The only identity we were taught was

sin^2(x) + cos^2(x) = 1

not even all the half angle ones which I'm finding out about now... How helpful for me!
 
  • #6
It looks like your school must teach trigonometry for a couple of weeks within a broader math course. When I was in high school, we had a one semester course for trig.
 

FAQ: Trig identity in complex multiplication

What is a trig identity in complex multiplication?

A trig identity in complex multiplication is an equation that relates trigonometric functions in complex numbers. It is used to simplify and solve complex trigonometric expressions.

How do you prove trig identities in complex multiplication?

To prove trig identities in complex multiplication, you can use the basic trigonometric identities and properties, such as the Pythagorean identities and the sum and difference formulas. You can also use algebraic manipulations and properties of complex numbers.

Can trig identities be used in complex number calculations?

Yes, trig identities can be used in complex number calculations. They are often used to simplify complex expressions and solve equations involving complex numbers.

Are there any special cases in trig identities for complex multiplication?

Yes, there are some special cases in trig identities for complex multiplication, such as the double angle formulas and the half angle formulas. These special cases can be useful in certain complex number calculations.

How can understanding trig identities in complex multiplication be useful?

Understanding trig identities in complex multiplication can be useful in various fields, such as engineering, physics, and mathematics. It can help in solving complex equations, analyzing complex systems, and simplifying complex expressions.

Similar threads

Replies
9
Views
2K
Replies
17
Views
5K
Replies
5
Views
2K
Replies
11
Views
934
Replies
9
Views
2K
Replies
4
Views
3K
Back
Top