- #1
karush
Gold Member
MHB
- 3,269
- 5
If $\sin\left({\theta}\right)=\frac{\left(p-q\right)}{\left(p+q\right)}$
And $p$ and $q$ are $90^o<\theta<180^o$ and $p>q$
Show that $\tan\left({\theta}\right)=\frac{q-p}{2\sqrt{qp}}$
I tried using $q=\frac{2\pi}{3 }$ and $p=\frac{5\pi}{6}$
But not...
To do this but theory I'm clueless
And $p$ and $q$ are $90^o<\theta<180^o$ and $p>q$
Show that $\tan\left({\theta}\right)=\frac{q-p}{2\sqrt{qp}}$
I tried using $q=\frac{2\pi}{3 }$ and $p=\frac{5\pi}{6}$
But not...
To do this but theory I'm clueless