I Trig Manipulations I'm Not Getting

AI Thread Summary
The discussion revolves around the manipulation of a trigonometric equation involving cotangents and hyperbolic functions. The user starts with the equation 2cot(θ/2) and attempts to derive a new equation using specific definitions for k1, k2, and θ. They successfully simplify the equation but express uncertainty about reaching the desired final form. A response suggests that the original problem statement may contain errors, indicating potential issues with the initial definitions or setup. The conversation highlights the complexity of trigonometric manipulations and the need for careful verification of initial conditions.
thatboi
Messages
130
Reaction score
20
Hi all,
I am starting with the following equation: ##2\cot\left(\frac{\theta}{2}\right) = \cot\left(\frac{k_{1}}{2}\right) - \cot\left(\frac{k_{2}}{2}\right)##
with the following definitions: ##k_{1} = \frac{K}{2} + ik, k_{2} = \frac{K}{2}-ik, \theta = \pi(I_{2}-I_{1}) + iNk##, where ##k,K,N\in\mathbb{R}## and ##I_{2},I_{1}\in\mathbb{Z}##. I wish to plug these definitions into the above equation and get the new equation: ##\cos\left(\frac{K}{2}\right)\sinh(Nk)=\sinh[(N-1)k]+\cos[\pi(I_{2}-I_{1})]\sinh(k)##. I have done the following (first use the identity ##\cot\frac{\theta}{2} = \frac{1+\cos\theta}{\sin\theta}##):
\begin{equation}
\begin{split}
&2\frac{1+\cos\theta}{\sin\theta} = \frac{1+\cos k_{1}}{\sin k_{1}}-\frac{1+\cos k_{2}}{\sin k_{2}} \\
&\rightarrow 2\frac{1+\cos(\pi(I_{2}-I_{1}))\cos(iNk)-\sin(\pi(I_{2}-I_{1}))\sin(iNk)}{\sin(\pi(I_{2}-I_{1}))\cos(iNk)+\sin(iNk)\cos(\pi(I_{2}-I_{1}))} = \frac{1+\cos\frac{K}{2}\cos(ik)-\sin\frac{K}{2}\sin(ik)}{\sin\frac{K}{2}\cos(ik)+\cos\frac{K}{2}\sin(ik)}-\frac{1+\cos\frac{K}{2}\cos(ik)+\sin\frac{K}{2}\sin(ik)}{\sin\frac{K}{2}\cos(ik)-\cos\frac{K}{2}\sin(ik)}\\
&\rightarrow -2i\frac{1+\cos(\pi(I_{2}-I_{1}))\cosh(Nk)}{\sinh(Nk)\cos(\pi(I_{2}-I_{1}))} = \frac{2i\sinh(k)}{\cos\left(\frac{K}{2}\right)-\cosh(k)}
\end{split}
\end{equation}
where I dropped terms with ##\sin(\pi(I_{2}-I_{1}))## since they would evaluate to 0. While this is a lot more simplified I still don't know how to get to the final form of equation I want or if I made an error somewhere. Any advice appreciated!
 
Mathematics news on Phys.org
The formula that you start with in your first line looks very unrealistic, when following the definitions you give for ## \theta ## and the various k's. It looks to me like the original problem statement may contain an error or two.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top