- #1
3.141592654
- 85
- 0
Homework Statement
I have to find the definite integral with limits of integration of 1 to [tex]\sqrt{3}[/tex] for:
[tex]\int\frac{\sqrt{1+x^2}}{x^2}[/tex]
Homework Equations
The Attempt at a Solution
I used trig. sub., so I have:
[tex]x=tan \theta[/tex]
[tex]dx=(sec \theta)^2[/tex]
So:
[tex]=\int\frac{\sqrt{1+(tan \theta)^2}}{(tan\theta)^2}(sec \theta)^2 d\theta[/tex]
[tex]=\int\frac{\sqrt{(sec \theta)^2}}{(tan\theta)^2}(sec \theta)^2 d\theta[/tex]
[tex]=\int\frac{(sec \theta)^3d\theta}{(tan\theta)^2}[/tex]
I can play around with U-sub or Trig. identities but I'm missing something.