- #1
teneleven
- 12
- 0
Homework Statement
[tex]\int\frac{dx}{\sqrt{x^2 + 16}}[/tex]
Homework Equations
[tex]x = 4\tan\theta[/tex]
[tex]dx = 4\sec^2\theta \ d\theta[/tex]
The Attempt at a Solution
[tex]\int\frac{4\sec^2\theta}{\sqrt{16\tan^2\theta + 16}}\ d\theta[/tex]
[tex]\int\frac{4\sec^2\theta}{\sqrt{16(\tan^2\theta + 1)}}\ d\theta[/tex]
[tex]\int\frac{4\sec^2\theta}{4\sec\theta}\ d\theta[/tex]
[tex]\int\sec\theta\ d\theta[/tex]
How do I reduce past this step?
Integration by parts returns me to [tex]\int\sec\theta\ d\theta[/tex]
The answer at the back of the book is as follows: [tex]\ln(\sqrt{x^2 + 16} + x) + C[/tex]
Thanks.
EDIT: notational mistakes corrected.
Last edited: