- #1
Mathman23
- 254
- 0
Hello
I got some funny idears don't know if they are true, but I will share them with you.
I would like to prove these formula
(1)[tex]sin(z_1 + z_2) = sin(z_1) \cdot cos(z_2) + sin(z_2) \cdot cos(z_1)[/tex]
(2)[tex]cos(z_1 + z_2) = sin(z_1) \cdot sin(z_2) - cos(z_2) \cdot cos(z_1)[/tex]
(3)[tex]cos(z)^2 + sin(z)^2 = 1[/tex]
for any complex number [tex]z_1, z_2, z \in \mathbb{C}[/tex]
Proof for (1)
(step a)Let [tex]z_1 = x_1 + i \cdot y_1[/tex] and [tex]z_2 = x_2 + i \cdot y_2[/tex]
(step b)According to the rules of addition of complex numbers
[tex]z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) [/tex], where [tex]z_1 + z_2 \in \mathbb{C}[/tex]
(step c)I denote [tex]x_1 + x_2 = x [/tex] and [tex]y_1 + y_2 = y[/tex]
(step d)thus by replacing x and y by their respective polar coordinant representation:
[tex]z_1 + z_2 = (r \cdot cos(\theta)) + i \cdot ( r \cdot sin(\theta)) [/tex], where [tex]z_1 + z_2 \in \mathbb{C}[/tex]
(step e)which can be reformulated to:
[tex]z_1 + z_2 = r \cdot (cos(\theta)) + i \cdot ( sin(\theta)) [/tex].
(step f)Which equals according to the euler identity:
[tex]z_1 + z_2 = r \cdot e^{i \theta} [/tex].
(step g)Then I apply sinus on both sides of the equality and get
[tex]\begin{array}{ccc}sin(z_1 + z_2) = cosh(sin(\theta) \cdot r) \cdot sin(cos(\theta) \cdot r) + sinh(sin(\theta) \cdot r) \cdot cos(cos(\theta) \cdot r) \cdot i \end{array}[/tex]
From the above we see that [tex]x = r \cdot cos(\theta)[/tex] and [tex]y = r \cdot sin(\theta)[/tex]
(step h)
With this in mind we rearrange the above and remembers the identity for x and y.
[tex]sin(z_1 + z_2) = sin(x_1 + x_2) \cdot cosh(y_1 + y_2) + cos(x_1 + x_2) \cdot sinh(y_1 + y_2) \cdot i[/tex]
I have thus proved the sinus addition formula for complex numbers. (q.e.d)
(2) Proof
The steps are the same until (step g) where I take cosine on both sides of the equality and then obtain
[tex]cos(z_1 + z_2) = cos(x_1 + x_2) \cdot cosh(y_1 + y_2) - sin(x_1 + x_2) \cdot sinh(y_1 + y_2) \cdot i[/tex]
q.e.d.
Test for (1): Let [tex]z_1 = 2 + 2i[/tex] and [tex]z_2 = 4 + 2i[/tex]
Then by applying my formula on
[tex]z_1 + z_2 = 6 + 4i[/tex]
[tex]sin(z_1 + z_2) = sin(6 + 4i) = sin(6) \cdot cosh(4) + cos(6) \cdot sinh(4) \cdot i[/tex]
Thus my formula is true.
Test for (1): Let [tex]z_1 = 2 + 2i[/tex] and [tex]z_2 = 4 + 2i[/tex]
Then by applying my formula on
[tex]z_1 + z_2 = 6 + 4i[/tex]
[tex]cos(z_1 + z_2) = cos(6 + 4i) = cos(6) \cdot cosh(4) - sin(6) \cdot sinh(4) \cdot i[/tex]
Thus my formula is true.
Best Regards
Fred
p.s. Does my proof look okay? If yes could somebody please give a hint for (3)??
I got some funny idears don't know if they are true, but I will share them with you.
Homework Statement
I would like to prove these formula
(1)[tex]sin(z_1 + z_2) = sin(z_1) \cdot cos(z_2) + sin(z_2) \cdot cos(z_1)[/tex]
(2)[tex]cos(z_1 + z_2) = sin(z_1) \cdot sin(z_2) - cos(z_2) \cdot cos(z_1)[/tex]
(3)[tex]cos(z)^2 + sin(z)^2 = 1[/tex]
for any complex number [tex]z_1, z_2, z \in \mathbb{C}[/tex]
The Attempt at a Solution
Proof for (1)
(step a)Let [tex]z_1 = x_1 + i \cdot y_1[/tex] and [tex]z_2 = x_2 + i \cdot y_2[/tex]
(step b)According to the rules of addition of complex numbers
[tex]z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) [/tex], where [tex]z_1 + z_2 \in \mathbb{C}[/tex]
(step c)I denote [tex]x_1 + x_2 = x [/tex] and [tex]y_1 + y_2 = y[/tex]
(step d)thus by replacing x and y by their respective polar coordinant representation:
[tex]z_1 + z_2 = (r \cdot cos(\theta)) + i \cdot ( r \cdot sin(\theta)) [/tex], where [tex]z_1 + z_2 \in \mathbb{C}[/tex]
(step e)which can be reformulated to:
[tex]z_1 + z_2 = r \cdot (cos(\theta)) + i \cdot ( sin(\theta)) [/tex].
(step f)Which equals according to the euler identity:
[tex]z_1 + z_2 = r \cdot e^{i \theta} [/tex].
(step g)Then I apply sinus on both sides of the equality and get
[tex]\begin{array}{ccc}sin(z_1 + z_2) = cosh(sin(\theta) \cdot r) \cdot sin(cos(\theta) \cdot r) + sinh(sin(\theta) \cdot r) \cdot cos(cos(\theta) \cdot r) \cdot i \end{array}[/tex]
From the above we see that [tex]x = r \cdot cos(\theta)[/tex] and [tex]y = r \cdot sin(\theta)[/tex]
(step h)
With this in mind we rearrange the above and remembers the identity for x and y.
[tex]sin(z_1 + z_2) = sin(x_1 + x_2) \cdot cosh(y_1 + y_2) + cos(x_1 + x_2) \cdot sinh(y_1 + y_2) \cdot i[/tex]
I have thus proved the sinus addition formula for complex numbers. (q.e.d)
(2) Proof
The steps are the same until (step g) where I take cosine on both sides of the equality and then obtain
[tex]cos(z_1 + z_2) = cos(x_1 + x_2) \cdot cosh(y_1 + y_2) - sin(x_1 + x_2) \cdot sinh(y_1 + y_2) \cdot i[/tex]
q.e.d.
Test for (1): Let [tex]z_1 = 2 + 2i[/tex] and [tex]z_2 = 4 + 2i[/tex]
Then by applying my formula on
[tex]z_1 + z_2 = 6 + 4i[/tex]
[tex]sin(z_1 + z_2) = sin(6 + 4i) = sin(6) \cdot cosh(4) + cos(6) \cdot sinh(4) \cdot i[/tex]
Thus my formula is true.
Test for (1): Let [tex]z_1 = 2 + 2i[/tex] and [tex]z_2 = 4 + 2i[/tex]
Then by applying my formula on
[tex]z_1 + z_2 = 6 + 4i[/tex]
[tex]cos(z_1 + z_2) = cos(6 + 4i) = cos(6) \cdot cosh(4) - sin(6) \cdot sinh(4) \cdot i[/tex]
Thus my formula is true.
Best Regards
Fred
Homework Equations
p.s. Does my proof look okay? If yes could somebody please give a hint for (3)??