- #1
shabi
- 5
- 0
any help with me understanding this problem would be very much appreciated.
show,
[itex]^{π/2}_{0}[/itex][itex]\int[/itex] cos[itex]^{5}[/itex]xdx = 8/15
hence show
[itex]^{π/2}_{0}[/itex][itex]\int[/itex] sin[itex]^{5}[/itex]xdx = [itex]^{π/2}_{0}[/itex][itex]\int[/itex] cos[itex]^{5}[/itex]xdx
where,
cos[itex]^{5}[/itex]θ = [itex]\frac{cos5θ + 5cos3θ + 10cosθ}{16}[/itex]
sin[itex]^{5}[/itex]θ = [itex]\frac{sin5θ - 5sin3θ + 10sinθ}{16}[/itex]
[itex]^{x}_{0}[/itex][itex]\int[/itex] cos(t)dt = [sin(t)][itex]^{x}_{0}[/itex]
= sin(x) - sin(0)
= sin(x)
[itex]^{π/2}_{0}[/itex][itex]\int[/itex] cos[itex]^{5}[/itex]xdx = [itex]\frac{1}{16}[/itex] [itex]^{π/2}_{0}[/itex][itex]\int[/itex] (cos5θ + 5cos3θ + 10cosθ)dθ
= [itex]\frac{1}{16}[/itex] [sin5θ + 5sin3θ + 10sinθ][itex]^{π/2}_{0}[/itex]
= [itex]\frac{1}{16}[/itex] (1 + 5 + 10)
the answers say from the 2nd line of my attempt it should be...
= [itex]\frac{1}{16}[/itex] [[itex]\frac{sin5θ}{5}[/itex] + [itex]\frac{5sin3θ}{3}[/itex] + 10sinθ][itex]^{π/2}_{0}[/itex]
= [itex]\frac{1}{16}[/itex] ([itex]\frac{1}{5}[/itex] - [itex]\frac{5}{3}[/itex] + 10)
but i don't understand why the first term was divided by 5 and the second by 3,
or why the sign changed from plus to minus.
Homework Statement
show,
[itex]^{π/2}_{0}[/itex][itex]\int[/itex] cos[itex]^{5}[/itex]xdx = 8/15
hence show
[itex]^{π/2}_{0}[/itex][itex]\int[/itex] sin[itex]^{5}[/itex]xdx = [itex]^{π/2}_{0}[/itex][itex]\int[/itex] cos[itex]^{5}[/itex]xdx
where,
cos[itex]^{5}[/itex]θ = [itex]\frac{cos5θ + 5cos3θ + 10cosθ}{16}[/itex]
sin[itex]^{5}[/itex]θ = [itex]\frac{sin5θ - 5sin3θ + 10sinθ}{16}[/itex]
Homework Equations
[itex]^{x}_{0}[/itex][itex]\int[/itex] cos(t)dt = [sin(t)][itex]^{x}_{0}[/itex]
= sin(x) - sin(0)
= sin(x)
The Attempt at a Solution
[itex]^{π/2}_{0}[/itex][itex]\int[/itex] cos[itex]^{5}[/itex]xdx = [itex]\frac{1}{16}[/itex] [itex]^{π/2}_{0}[/itex][itex]\int[/itex] (cos5θ + 5cos3θ + 10cosθ)dθ
= [itex]\frac{1}{16}[/itex] [sin5θ + 5sin3θ + 10sinθ][itex]^{π/2}_{0}[/itex]
= [itex]\frac{1}{16}[/itex] (1 + 5 + 10)
the answers say from the 2nd line of my attempt it should be...
= [itex]\frac{1}{16}[/itex] [[itex]\frac{sin5θ}{5}[/itex] + [itex]\frac{5sin3θ}{3}[/itex] + 10sinθ][itex]^{π/2}_{0}[/itex]
= [itex]\frac{1}{16}[/itex] ([itex]\frac{1}{5}[/itex] - [itex]\frac{5}{3}[/itex] + 10)
but i don't understand why the first term was divided by 5 and the second by 3,
or why the sign changed from plus to minus.